Spaces:
svjack
/
Runtime error

yuandong513
feat: init
17cd746
import torch
import torch.nn as nn
from torch.autograd import Variable
def get_channel_sum(input):
temp = torch.sum(input, dim=3)
output = torch.sum(temp, dim=2)
return output
def expand_two_dimensions_at_end(input, dim1, dim2):
input = input.unsqueeze(-1).unsqueeze(-1)
input = input.expand(-1, -1, dim1, dim2)
return input
class TestTimePCA(nn.Module):
def __init__(self):
super(TestTimePCA, self).__init__()
def _make_grid(self, h, w):
yy, xx = torch.meshgrid(
torch.arange(h).float() / (h - 1) * 2 - 1,
torch.arange(w).float() / (w - 1) * 2 - 1)
return yy, xx
def weighted_mean(self, heatmap):
batch, npoints, h, w = heatmap.shape
yy, xx = self._make_grid(h, w)
yy = yy.view(1, 1, h, w).to(heatmap)
xx = xx.view(1, 1, h, w).to(heatmap)
yy_coord = (yy * heatmap).sum([2, 3]) # batch x npoints
xx_coord = (xx * heatmap).sum([2, 3]) # batch x npoints
coords = torch.stack([xx_coord, yy_coord], dim=-1)
return coords
def unbiased_weighted_covariance(self, htp, means, num_dim_image=2, EPSILON=1e-5):
batch_size, num_points, height, width = htp.shape
yv, xv = self._make_grid(height, width)
xv = Variable(xv)
yv = Variable(yv)
if htp.is_cuda:
xv = xv.cuda()
yv = yv.cuda()
xmean = means[:, :, 0]
xv_minus_mean = xv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(xmean, height,
width) # [batch_size, 68, 64, 64]
ymean = means[:, :, 1]
yv_minus_mean = yv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(ymean, height,
width) # [batch_size, 68, 64, 64]
wt_xv_minus_mean = xv_minus_mean
wt_yv_minus_mean = yv_minus_mean
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, height * width) # [batch_size*68, 4096]
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, 1, height * width) # [batch_size*68, 1, 4096]
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, height * width) # [batch_size*68, 4096]
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, 1, height * width) # [batch_size*68, 1, 4096]
vec_concat = torch.cat((wt_xv_minus_mean, wt_yv_minus_mean), 1) # [batch_size*68, 2, 4096]
htp_vec = htp.view(batch_size * num_points, 1, height * width)
htp_vec = htp_vec.expand(-1, 2, -1)
covariance = torch.bmm(htp_vec * vec_concat, vec_concat.transpose(1, 2)) # [batch_size*68, 2, 2]
covariance = covariance.view(batch_size, num_points, num_dim_image, num_dim_image) # [batch_size, 68, 2, 2]
V_1 = htp.sum([2, 3]) + EPSILON # [batch_size, 68]
V_2 = torch.pow(htp, 2).sum([2, 3]) + EPSILON # [batch_size, 68]
denominator = V_1 - (V_2 / V_1)
covariance = covariance / expand_two_dimensions_at_end(denominator, num_dim_image, num_dim_image)
return covariance
def forward(self, heatmap, groudtruth):
batch, npoints, h, w = heatmap.shape
heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6)
heatmap = heatmap / heatmap_sum.view(batch, npoints, 1, 1)
# means [batch_size, 68, 2]
means = self.weighted_mean(heatmap)
# covars [batch_size, 68, 2, 2]
covars = self.unbiased_weighted_covariance(heatmap, means)
# eigenvalues [batch_size * 68, 2] , eigenvectors [batch_size * 68, 2, 2]
covars = covars.view(batch * npoints, 2, 2).cpu()
evalues, evectors = covars.symeig(eigenvectors=True)
evalues = evalues.view(batch, npoints, 2)
evectors = evectors.view(batch, npoints, 2, 2)
means = means.cpu()
results = [dict() for _ in range(batch)]
for i in range(batch):
results[i]['pred'] = means[i].numpy().tolist()
results[i]['gt'] = groudtruth[i].cpu().numpy().tolist()
results[i]['evalues'] = evalues[i].numpy().tolist()
results[i]['evectors'] = evectors[i].numpy().tolist()
return results