|
import cv2 |
|
import math |
|
import copy |
|
import numpy as np |
|
import argparse |
|
import torch |
|
import json |
|
|
|
|
|
from lib import utility |
|
from FaceBoxesV2.faceboxes_detector import * |
|
|
|
class GetCropMatrix(): |
|
""" |
|
from_shape -> transform_matrix |
|
""" |
|
|
|
def __init__(self, image_size, target_face_scale, align_corners=False): |
|
self.image_size = image_size |
|
self.target_face_scale = target_face_scale |
|
self.align_corners = align_corners |
|
|
|
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): |
|
cosv = math.cos(angle) |
|
sinv = math.sin(angle) |
|
|
|
fx, fy = from_center |
|
tx, ty = to_center |
|
|
|
acos = scale * cosv |
|
asin = scale * sinv |
|
|
|
a0 = acos |
|
a1 = -asin |
|
a2 = tx - acos * fx + asin * fy + shift_xy[0] |
|
|
|
b0 = asin |
|
b1 = acos |
|
b2 = ty - asin * fx - acos * fy + shift_xy[1] |
|
|
|
rot_scale_m = np.array([ |
|
[a0, a1, a2], |
|
[b0, b1, b2], |
|
[0.0, 0.0, 1.0] |
|
], np.float32) |
|
return rot_scale_m |
|
|
|
def process(self, scale, center_w, center_h): |
|
if self.align_corners: |
|
to_w, to_h = self.image_size - 1, self.image_size - 1 |
|
else: |
|
to_w, to_h = self.image_size, self.image_size |
|
|
|
rot_mu = 0 |
|
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) |
|
shift_xy_mu = (0, 0) |
|
matrix = self._compose_rotate_and_scale( |
|
rot_mu, scale_mu, shift_xy_mu, |
|
from_center=[center_w, center_h], |
|
to_center=[to_w / 2.0, to_h / 2.0]) |
|
return matrix |
|
|
|
|
|
class TransformPerspective(): |
|
""" |
|
image, matrix3x3 -> transformed_image |
|
""" |
|
|
|
def __init__(self, image_size): |
|
self.image_size = image_size |
|
|
|
def process(self, image, matrix): |
|
return cv2.warpPerspective( |
|
image, matrix, dsize=(self.image_size, self.image_size), |
|
flags=cv2.INTER_LINEAR, borderValue=0) |
|
|
|
|
|
class TransformPoints2D(): |
|
""" |
|
points (nx2), matrix (3x3) -> points (nx2) |
|
""" |
|
|
|
def process(self, srcPoints, matrix): |
|
|
|
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1) |
|
desPoints = desPoints @ np.transpose(matrix) |
|
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]] |
|
return desPoints.astype(srcPoints.dtype) |
|
|
|
class Alignment: |
|
def __init__(self, args, model_path, dl_framework, device_ids): |
|
self.input_size = 256 |
|
self.target_face_scale = 1.0 |
|
self.dl_framework = dl_framework |
|
|
|
|
|
if self.dl_framework == "pytorch": |
|
|
|
self.config = utility.get_config(args) |
|
self.config.device_id = device_ids[0] |
|
|
|
utility.set_environment(self.config) |
|
|
|
|
|
|
|
|
|
|
|
net = utility.get_net(self.config) |
|
if device_ids == [-1]: |
|
checkpoint = torch.load(model_path, map_location="cpu") |
|
else: |
|
checkpoint = torch.load(model_path) |
|
net.load_state_dict(checkpoint["net"]) |
|
|
|
if self.config.device_id == -1: |
|
net = net.cpu() |
|
else: |
|
net = net.to(self.config.device_id) |
|
|
|
net.eval() |
|
self.alignment = net |
|
else: |
|
assert False |
|
|
|
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, |
|
align_corners=True) |
|
self.transformPerspective = TransformPerspective(image_size=self.input_size) |
|
self.transformPoints2D = TransformPoints2D() |
|
|
|
def norm_points(self, points, align_corners=False): |
|
if align_corners: |
|
|
|
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1 |
|
else: |
|
|
|
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1 |
|
|
|
def denorm_points(self, points, align_corners=False): |
|
if align_corners: |
|
|
|
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) |
|
else: |
|
|
|
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2 |
|
|
|
def preprocess(self, image, scale, center_w, center_h): |
|
matrix = self.getCropMatrix.process(scale, center_w, center_h) |
|
input_tensor = self.transformPerspective.process(image, matrix) |
|
input_tensor = input_tensor[np.newaxis, :] |
|
|
|
input_tensor = torch.from_numpy(input_tensor) |
|
input_tensor = input_tensor.float().permute(0, 3, 1, 2) |
|
input_tensor = input_tensor / 255.0 * 2.0 - 1.0 |
|
|
|
if self.config.device_id == -1: |
|
input_tensor = input_tensor.cpu() |
|
else: |
|
input_tensor = input_tensor.to(self.config.device_id) |
|
|
|
return input_tensor, matrix |
|
|
|
def postprocess(self, srcPoints, coeff): |
|
|
|
|
|
|
|
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32) |
|
for i in range(srcPoints.shape[0]): |
|
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2] |
|
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2] |
|
return dstPoints |
|
|
|
def analyze(self, image, scale, center_w, center_h): |
|
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h) |
|
|
|
if self.dl_framework == "pytorch": |
|
with torch.no_grad(): |
|
output = self.alignment(input_tensor) |
|
landmarks = output[-1][0] |
|
else: |
|
assert False |
|
|
|
landmarks = self.denorm_points(landmarks) |
|
landmarks = landmarks.data.cpu().numpy()[0] |
|
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix)) |
|
|
|
return landmarks |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description="inference script") |
|
parser.add_argument('--folder_path', type=str, help='Path to image folder') |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
current_path = os.getcwd() |
|
|
|
use_gpu = True |
|
|
|
if use_gpu: |
|
device = torch.device("cuda:0") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
current_path = os.getcwd() |
|
det_model_path = os.path.join(current_path, 'preprocess', 'submodules', 'Landmark_detection', 'FaceBoxesV2/weights/FaceBoxesV2.pth') |
|
detector = FaceBoxesDetector('FaceBoxes', det_model_path, use_gpu, device) |
|
|
|
|
|
model_path = os.path.join(current_path, 'preprocess', 'submodules', 'Landmark_detection', 'weights/68_keypoints_model.pkl') |
|
|
|
if use_gpu: |
|
device_ids = [0] |
|
else: |
|
device_ids = [-1] |
|
|
|
args.config_name = 'alignment' |
|
alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids) |
|
|
|
img_path_list = os.listdir(args.folder_path) |
|
kpts_code = dict() |
|
|
|
|
|
for file_name in img_path_list: |
|
abs_path = os.path.join(args.folder_path, file_name) |
|
|
|
image = cv2.imread(abs_path) |
|
image_draw = copy.deepcopy(image) |
|
|
|
detections, _ = detector.detect(image, 0.6, 1) |
|
for idx in range(len(detections)): |
|
x1_ori = detections[idx][2] |
|
y1_ori = detections[idx][3] |
|
x2_ori = x1_ori + detections[idx][4] |
|
y2_ori = y1_ori + detections[idx][5] |
|
|
|
scale = max(x2_ori - x1_ori, y2_ori - y1_ori) / 180 |
|
center_w = (x1_ori + x2_ori) / 2 |
|
center_h = (y1_ori + y2_ori) / 2 |
|
scale, center_w, center_h = float(scale), float(center_w), float(center_h) |
|
|
|
landmarks_pv = alignment.analyze(image, scale, center_w, center_h) |
|
landmarks_pv_list = landmarks_pv.tolist() |
|
|
|
for num in range(landmarks_pv.shape[0]): |
|
cv2.circle(image_draw, (round(landmarks_pv[num][0]), round(landmarks_pv[num][1])), |
|
2, (0, 255, 0), -1) |
|
|
|
kpts_code[file_name] = landmarks_pv_list |
|
save_path = args.folder_path[:-5] + 'landmark' |
|
cv2.imwrite(os.path.join(save_path, file_name), image_draw) |
|
|
|
path = args.folder_path[:-5] |
|
json.dump(kpts_code, open(os.path.join(path, 'keypoint.json'), 'w')) |
|
|