Spaces:
svjack
/
Runtime error

File size: 6,938 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# 
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual 
# property and proprietary rights in and to this software and related documentation. 
# Any commercial use, reproduction, disclosure or distribution of this software and 
# related documentation without an express license agreement from Toyota Motor Europe NV/SA 
# is strictly prohibited.
#


import json
import numpy as np
import torch
from vhap.data.video_dataset import VideoDataset
from vhap.config.nersemble import NersembleDataConfig
from vhap.util import camera
from vhap.util.log import get_logger


logger = get_logger(__name__)


class NeRSembleDataset(VideoDataset):
    def __init__(
        self,
        cfg: NersembleDataConfig,
        img_to_tensor: bool = False,
        batchify_all_views: bool = False,
    ):
        """
        Args:
            root_folder: Path to dataset with the following directory layout
                <root_folder>/
                |---camera_params/
                |   |---<subject>/
                |       |---camera_params.json
                |
                |---color_correction/
                |   |---<subject>/
                |       |---<camera_id>.npy
                |
                |---<subject>/
                    |---<sequence>/
                        |---images/
                        |   |---cam_<camera_id>_<timestep_id>.jpg
                        |
                        |---alpha_maps/
                        |   |---cam_<camera_id>_<timestep_id>.png
                        |
                        |---landmark2d/
                                |---face-alignment/
                                |    |---<camera_id>.npz
                                |
                                |---STAR/
                                     |---<camera_id>.npz
        """
        self.cfg = cfg
        assert cfg.subject != "", "Please specify the subject name"

        super().__init__(
            cfg=cfg,
            img_to_tensor=img_to_tensor,
            batchify_all_views=batchify_all_views,
        )
    
    def match_sequences(self):
        logger.info(f"Subject: {self.cfg.subject}, sequence: {self.cfg.sequence}")
        return list(filter(lambda x: x.is_dir(), (self.cfg.root_folder / self.cfg.subject).glob(f"{self.cfg.sequence}*")))
    
    def define_properties(self):
        super().define_properties()
        self.properties['rgb']['cam_id_prefix'] = "cam_"
        self.properties['alpha_map']['cam_id_prefix'] = "cam_"
    
    def load_camera_params(self):
        load_path = self.cfg.root_folder / "camera_params" / self.cfg.subject / "camera_params.json"
        assert load_path.exists()
        param = json.load(open(load_path))

        K = torch.Tensor(param["intrinsics"])

        if "height" not in param or "width" not in param:
            assert self.cfg.image_size_during_calibration is not None
            H, W = self.cfg.image_size_during_calibration
        else:
            H, W = param["height"], param["width"]

        self.camera_ids =  list(param["world_2_cam"].keys())
        w2c = torch.tensor([param["world_2_cam"][k] for k in self.camera_ids])  # (N, 4, 4)
        R = w2c[..., :3, :3]
        T = w2c[..., :3, 3]

        orientation = R.transpose(-1, -2)  # (N, 3, 3)
        location = R.transpose(-1, -2) @ -T[..., None]  # (N, 3, 1)

        # adjust how cameras distribute in the space with a global rotation
        if self.cfg.align_cameras_to_axes:
            orientation, location = camera.align_cameras_to_axes(
                orientation, location, target_convention="opengl"
            )

        # modify the local orientation of cameras to fit in different camera conventions
        if self.cfg.camera_convention_conversion is not None:
            orientation, K = camera.convert_camera_convention(
                self.cfg.camera_convention_conversion, orientation, K, H, W
            )

        c2w = torch.cat([orientation, location], dim=-1)  # camera-to-world transformation

        if self.cfg.target_extrinsic_type == "w2c":
            R = orientation.transpose(-1, -2)
            T = orientation.transpose(-1, -2) @ -location
            w2c = torch.cat([R, T], dim=-1)  # world-to-camera transformation
            extrinsic = w2c
        elif self.cfg.target_extrinsic_type == "c2w":
            extrinsic = c2w
        else:
            raise NotImplementedError(f"Unknown extrinsic type: {self.cfg.target_extrinsic_type}")

        self.camera_params = {}
        for i, camera_id in enumerate(self.camera_ids):
            self.camera_params[camera_id] = {"intrinsic": K, "extrinsic": extrinsic[i]}

    def filter_division(self, division):
        if division is not None:
            cam_for_train = [8, 7, 9, 4, 10, 5, 13, 2, 12, 1, 14, 0]
            if division == "train":
                self.camera_ids = [
                    self.camera_ids[i]
                    for i in range(len(self.camera_ids))
                    if i in cam_for_train
                ]
            elif division == "val":
                self.camera_ids = [
                    self.camera_ids[i]
                    for i in range(len(self.camera_ids))
                    if i not in cam_for_train
                ]
            elif division == "front-view":
                self.camera_ids = self.camera_ids[8:9]
            elif division == "side-view":
                self.camera_ids = self.camera_ids[0:1]
            elif division == "six-view":
                self.camera_ids = [self.camera_ids[i] for i in [0, 1, 7, 8, 14, 15]]
            else:
                raise NotImplementedError(f"Unknown division type: {division}")
            logger.info(f"division: {division}")
    
    def apply_transforms(self, item):
        if self.cfg.use_color_correction:
            color_correction_path = self.cfg.root_folder / 'color_correction' / self.cfg.subject / f'{item["camera_id"]}.npy'
            affine_color_transform = np.load(color_correction_path)
            rgb = item["rgb"] / 255
            rgb = rgb @ affine_color_transform[:3, :3] + affine_color_transform[np.newaxis, :3, 3]
            item["rgb"] = (np.clip(rgb, 0, 1) * 255).astype(np.uint8)

        super().apply_transforms(item)
        return item


if __name__ == "__main__":
    import tyro
    from tqdm import tqdm
    from torch.utils.data import DataLoader
    from vhap.config.nersemble import NersembleDataConfig
    from vhap.config.base import import_module

    cfg = tyro.cli(NersembleDataConfig)
    cfg.use_landmark = False
    dataset = import_module(cfg._target)(
        cfg=cfg,
        img_to_tensor=False,
        batchify_all_views=True,
    )

    print(len(dataset))

    sample = dataset[0]
    print(sample.keys())
    print(sample["rgb"].shape)

    dataloader = DataLoader(dataset, batch_size=None, shuffle=False, num_workers=1)
    for item in tqdm(dataloader):
        pass