Spaces:
svjack
/
Runtime error

File size: 10,917 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os.path as osp
from .base import Base


class Alignment(Base):
    """

    Alignment configure file, which contains training parameters of alignment.

    """

    def __init__(self, args):
        super(Alignment, self).__init__('alignment')
        self.ckpt_dir = '/mnt/workspace/humanAIGC/project/STAR/weights'
        self.net = "stackedHGnet_v1"
        self.nstack = 4
        self.loader_type = "alignment"
        self.data_definition = "300W"  # COFW, 300W, WFLW
        self.test_file = "test.tsv"

        # image
        self.channels = 3
        self.width = 256
        self.height = 256
        self.means = (127.5, 127.5, 127.5)
        self.scale = 1 / 127.5
        self.aug_prob = 1.0

        self.display_iteration = 10
        self.val_epoch = 1
        self.valset = "test.tsv"
        self.norm_type = 'default'
        self.encoder_type = 'default'
        self.decoder_type = 'default'

        # scheduler & optimizer
        self.milestones = [200, 350, 450]
        self.max_epoch = 260
        self.optimizer = "adam"
        self.learn_rate = 0.001
        self.weight_decay = 0.00001
        self.betas = [0.9, 0.999]
        self.gamma = 0.1

        # batch_size & workers
        self.batch_size = 32
        self.train_num_workers = 16
        self.val_batch_size = 32
        self.val_num_workers = 16
        self.test_batch_size = 16
        self.test_num_workers = 0

        # tricks
        self.ema = True
        self.add_coord = True
        self.use_AAM = True

        # loss
        self.loss_func = "STARLoss_v2"

        # STAR Loss paras
        self.star_w = 1
        self.star_dist = 'smoothl1'

        self.init_from_args(args)

        # COFW
        if self.data_definition == "COFW":
            self.edge_info = (
                (True, (0, 4, 2, 5)),  # RightEyebrow
                (True, (1, 6, 3, 7)),  # LeftEyebrow
                (True, (8, 12, 10, 13)),  # RightEye
                (False, (9, 14, 11, 15)),  # LeftEye
                (True, (18, 20, 19, 21)),  # Nose
                (True, (22, 26, 23, 27)),  # LowerLip
                (True, (22, 24, 23, 25)),  # UpperLip
            )
            if self.norm_type == 'ocular':
                self.nme_left_index = 8  # ocular
                self.nme_right_index = 9  # ocular
            elif self.norm_type in ['pupil', 'default']:
                self.nme_left_index = 16  # pupil
                self.nme_right_index = 17  # pupil
            else:
                raise NotImplementedError
            self.classes_num = [29, 7, 29]
            self.crop_op = True
            self.flip_mapping = (
                [0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11], [12, 14], [16, 17], [13, 15], [18, 19], [22, 23],
            )
            self.image_dir = osp.join(self.image_dir, 'COFW')
        # 300W
        elif self.data_definition == "300W":
            self.edge_info = (
                (False, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)),  # FaceContour
                (False, (17, 18, 19, 20, 21)),  # RightEyebrow
                (False, (22, 23, 24, 25, 26)),  # LeftEyebrow
                (False, (27, 28, 29, 30)),  # NoseLine
                (False, (31, 32, 33, 34, 35)),  # Nose
                (True, (36, 37, 38, 39, 40, 41)),  # RightEye
                (True, (42, 43, 44, 45, 46, 47)),  # LeftEye
                (True, (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59)),  # OuterLip
                (True, (60, 61, 62, 63, 64, 65, 66, 67)),  # InnerLip
            )
            if self.norm_type in ['ocular', 'default']:
                self.nme_left_index = 36  # ocular
                self.nme_right_index = 45  # ocular
            elif self.norm_type == 'pupil':
                self.nme_left_index = [36, 37, 38, 39, 40, 41]  # pupil
                self.nme_right_index = [42, 43, 44, 45, 46, 47]  # pupil
            else:
                raise NotImplementedError
            self.classes_num = [68, 9, 68]
            self.crop_op = True
            self.flip_mapping = (
                [0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9],
                [17, 26], [18, 25], [19, 24], [20, 23], [21, 22],
                [31, 35], [32, 34],
                [36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
                [48, 54], [49, 53], [50, 52], [61, 63], [60, 64], [67, 65], [58, 56], [59, 55],
            )
            self.image_dir = osp.join(self.image_dir, '300W')
            # self.image_dir = osp.join(self.image_dir, '300VW_images')
        # 300VW
        elif self.data_definition == "300VW":
            self.edge_info = (
                (False, (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)),  # FaceContour
                (False, (17, 18, 19, 20, 21)),  # RightEyebrow
                (False, (22, 23, 24, 25, 26)),  # LeftEyebrow
                (False, (27, 28, 29, 30)),  # NoseLine
                (False, (31, 32, 33, 34, 35)),  # Nose
                (True, (36, 37, 38, 39, 40, 41)),  # RightEye
                (True, (42, 43, 44, 45, 46, 47)),  # LeftEye
                (True, (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59)),  # OuterLip
                (True, (60, 61, 62, 63, 64, 65, 66, 67)),  # InnerLip
            )
            if self.norm_type in ['ocular', 'default']:
                self.nme_left_index = 36  # ocular
                self.nme_right_index = 45  # ocular
            elif self.norm_type == 'pupil':
                self.nme_left_index = [36, 37, 38, 39, 40, 41]  # pupil
                self.nme_right_index = [42, 43, 44, 45, 46, 47]  # pupil
            else:
                raise NotImplementedError
            self.classes_num = [68, 9, 68]
            self.crop_op = True
            self.flip_mapping = (
                [0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9],
                [17, 26], [18, 25], [19, 24], [20, 23], [21, 22],
                [31, 35], [32, 34],
                [36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
                [48, 54], [49, 53], [50, 52], [61, 63], [60, 64], [67, 65], [58, 56], [59, 55],
            )
            self.image_dir = osp.join(self.image_dir, '300VW_Dataset_2015_12_14')
        # WFLW
        elif self.data_definition == "WFLW":
            self.edge_info = (
                (False, (
                    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                    27,
                    28, 29, 30, 31, 32)),  # FaceContour
                (True, (33, 34, 35, 36, 37, 38, 39, 40, 41)),  # RightEyebrow
                (True, (42, 43, 44, 45, 46, 47, 48, 49, 50)),  # LeftEyebrow
                (False, (51, 52, 53, 54)),  # NoseLine
                (False, (55, 56, 57, 58, 59)),  # Nose
                (True, (60, 61, 62, 63, 64, 65, 66, 67)),  # RightEye
                (True, (68, 69, 70, 71, 72, 73, 74, 75)),  # LeftEye
                (True, (76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87)),  # OuterLip
                (True, (88, 89, 90, 91, 92, 93, 94, 95)),  # InnerLip
            )
            if self.norm_type in ['ocular', 'default']:
                self.nme_left_index = 60  # ocular
                self.nme_right_index = 72  # ocular
            elif self.norm_type == 'pupil':
                self.nme_left_index = 96  # pupils
                self.nme_right_index = 97  # pupils
            else:
                raise NotImplementedError
            self.classes_num = [98, 9, 98]
            self.crop_op = True
            self.flip_mapping = (
                [0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27], [6, 26], [7, 25], [8, 24], [9, 23], [10, 22],
                [11, 21], [12, 20], [13, 19], [14, 18], [15, 17],  # cheek
                [33, 46], [34, 45], [35, 44], [36, 43], [37, 42], [38, 50], [39, 49], [40, 48], [41, 47],  # elbrow
                [60, 72], [61, 71], [62, 70], [63, 69], [64, 68], [65, 75], [66, 74], [67, 73],
                [55, 59], [56, 58],
                [76, 82], [77, 81], [78, 80], [87, 83], [86, 84],
                [88, 92], [89, 91], [95, 93], [96, 97]
            )
            self.image_dir = osp.join(self.image_dir, 'WFLW', 'WFLW_images')

        self.label_num = self.nstack * 3 if self.use_AAM else self.nstack
        self.loss_weights, self.criterions, self.metrics = [], [], []
        for i in range(self.nstack):
            factor = (2 ** i) / (2 ** (self.nstack - 1))
            if self.use_AAM:
                self.loss_weights += [factor * weight for weight in [1.0, 10.0, 10.0]]
                self.criterions += [self.loss_func, "AWingLoss", "AWingLoss"]
                self.metrics += ["NME", None, None]
            else:
                self.loss_weights += [factor * weight for weight in [1.0]]
                self.criterions += [self.loss_func, ]
                self.metrics += ["NME", ]

        self.key_metric_index = (self.nstack - 1) * 3 if self.use_AAM else (self.nstack - 1)

        # data
        self.folder = self.get_foldername()
        self.work_dir = osp.join(self.ckpt_dir, self.data_definition, self.folder)
        self.model_dir = osp.join(self.work_dir, 'model')
        self.log_dir = osp.join(self.work_dir, 'log')

        self.train_tsv_file = osp.join(self.annot_dir, self.data_definition, "train.tsv")
        self.train_pic_dir = self.image_dir

        self.val_tsv_file = osp.join(self.annot_dir, self.data_definition, self.valset)
        self.val_pic_dir = self.image_dir

        self.test_tsv_file = osp.join(self.annot_dir, self.data_definition, self.test_file)
        self.test_pic_dir = self.image_dir

        # self.train_tsv_file = osp.join(self.annot_dir, '300VW', "train.tsv")
        # self.train_pic_dir = self.image_dir

        # self.val_tsv_file = osp.join(self.annot_dir, '300VW', self.valset)
        # self.val_pic_dir = self.image_dir

        # self.test_tsv_file = osp.join(self.annot_dir, '300VW', self.test_file)
        # self.test_pic_dir = self.image_dir


    def get_foldername(self):
        str = ''
        str += '{}_{}x{}_{}_ep{}_lr{}_bs{}'.format(self.data_definition, self.height, self.width,
                                                   self.optimizer, self.max_epoch, self.learn_rate, self.batch_size)
        str += '_{}'.format(self.loss_func)
        str += '_{}_{}'.format(self.star_dist, self.star_w) if self.loss_func == 'STARLoss' else ''
        str += '_AAM' if self.use_AAM else ''
        str += '_{}'.format(self.valset[:-4]) if self.valset != 'test.tsv' else ''
        str += '_{}'.format(self.id)
        return str