File size: 11,374 Bytes
d015578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import random
import cv2
import numpy as np
from PIL import Image
from torchvision import transforms

# My libs
import spiga.data.loaders.augmentors.utils as dlu


class HorizontalFlipAug:
    def __init__(self, ldm_flip_order, prob=0.5):
        self.prob = prob
        self.ldm_flip_order = ldm_flip_order

    def __call__(self, sample):
        img = sample['image']
        landmarks = sample['landmarks']
        mask = sample['mask_ldm']
        vis = sample['visible']
        bbox = sample['bbox']

        if random.random() < self.prob:
            new_img = transforms.functional.hflip(img)

            lm_new_order = self.ldm_flip_order
            new_landmarks = landmarks[lm_new_order]
            new_landmarks = (new_landmarks - (img.size[0], 0)) * (-1, 1)
            new_mask = mask[lm_new_order]
            new_vis = vis[lm_new_order]

            x, y, w, h = bbox
            new_x = img.size[0] - x - w
            new_bbox = np.array((new_x, y, w, h))

            sample['image'] = new_img
            sample['landmarks'] = new_landmarks
            sample['mask_ldm'] = new_mask
            sample['visible'] = new_vis
            sample['bbox'] = new_bbox

        return sample


class GeometryBaseAug:

    def __call__(self, sample):
        raise NotImplementedError('Inheritance __call__ not defined')

    def map_affine_transformation(self, sample, affine_transf, new_size=None):
        sample['image'] = self._image_affine_trans(sample['image'], affine_transf, new_size)
        sample['bbox'] = self._bbox_affine_trans(sample['bbox'], affine_transf)
        if 'landmarks' in sample.keys():
            sample['landmarks'] = self._landmarks_affine_trans(sample['landmarks'], affine_transf)
        return sample

    def clean_outbbox_landmarks(self, shape, landmarks, mask):
        filter_x1 = landmarks[:, 0] >= shape[0]
        filter_x2 = landmarks[:, 0] < (shape[0] + shape[2])
        filter_x = np.logical_and(filter_x1,filter_x2)

        filter_y1 = landmarks[:, 1] >= shape[1]
        filter_y2 = landmarks[:, 1] < (shape[1] + shape[3])
        filter_y = np.logical_and(filter_y1, filter_y2)

        filter_bbox = np.logical_and(filter_x, filter_y)
        new_mask = mask*filter_bbox
        new_landmarks = (landmarks.T * new_mask).T
        new_landmarks = new_landmarks.astype(int).astype(float)
        return new_mask, new_landmarks

    def _image_affine_trans(self, image, affine_transf, new_size=None):

        if not new_size:
            new_size = image.size

        inv_affine_transf = dlu.get_inverse_transf(affine_transf)
        new_image = image.transform(new_size, Image.AFFINE, inv_affine_transf.flatten())
        return new_image

    def _bbox_affine_trans(self, bbox, affine_transf):

        x, y, w, h = bbox
        images_bb = []
        for point in ([x, y, 1], [x + w, y, 1],
                      [x, y + h, 1], [x + w, y + h, 1]):
            images_bb.append(affine_transf.dot(point))
        images_bb = np.array(images_bb)

        new_corner0 = np.min(images_bb, axis=0)
        new_corner1 = np.max(images_bb, axis=0)

        new_x, new_y = new_corner0
        new_w, new_h = new_corner1 - new_corner0
        new_bbox = np.array((new_x, new_y, new_w, new_h))
        return new_bbox

    def _landmarks_affine_trans(self, landmarks, affine_transf):

        homog_landmarks = dlu.affine2homogeneous(landmarks)
        new_landmarks = affine_transf.dot(homog_landmarks.T).T
        return new_landmarks


class RSTAug(GeometryBaseAug):

    def __init__(self, angle_range=45., scale_min=-0.15, scale_max=0.15, trl_ratio=0.05):
        self.scale_max = scale_max
        self.scale_min = scale_min
        self.angle_range = angle_range
        self.trl_ratio = trl_ratio

    def __call__(self, sample):
        x, y, w, h = sample['bbox']

        x0, y0 = x + w/2, y + h/2  # center of the face, which will be the center of the rotation

        # Bbox translation
        rnd_Tx = np.random.uniform(-self.trl_ratio, self.trl_ratio) * w
        rnd_Ty = np.random.uniform(-self.trl_ratio, self.trl_ratio) * h
        sample['bbox'][0] += rnd_Tx
        sample['bbox'][1] += rnd_Ty

        scale = 1 + np.random.uniform(self.scale_min, self.scale_max)
        angle = np.random.uniform(-self.angle_range, self.angle_range)

        similarity = dlu.get_similarity_matrix(angle, scale, center=(x0, y0))
        new_sample = self.map_affine_transformation(sample, similarity)
        return new_sample


class TargetCropAug(GeometryBaseAug):
    def __init__(self, img_new_size=128, map_new_size=128, target_dist=1.3):

        self.target_dist = target_dist
        self.new_size_x, self.new_size_y = self._convert_shapes(img_new_size)
        self.map_size_x, self.map_size_y = self._convert_shapes(map_new_size)
        self.img2map_scale = False

        # Mismatch between img shape and featuremap shape
        if self.map_size_x != self.new_size_x or self.map_size_y != self.new_size_y:
            self.img2map_scale = True
            self.map_scale_x = self.map_size_x / self.new_size_x
            self.map_scale_y = self.map_size_y / self.new_size_y
            self.map_scale_xx = self.map_scale_x * self.map_scale_x
            self.map_scale_xy = self.map_scale_x * self.map_scale_y
            self.map_scale_yy = self.map_scale_y * self.map_scale_y

    def _convert_shapes(self, new_size):
        if isinstance(new_size, (tuple, list)):
            new_size_x = new_size[0]
            new_size_y = new_size[1]
        else:
            new_size_x = new_size
            new_size_y = new_size
        return new_size_x, new_size_y

    def __call__(self, sample):
        x, y, w, h = sample['bbox']
        # we enlarge the area taken around the bounding box
        # it is neccesary to change the botton left point of the bounding box
        # according to the previous enlargement. Note this will NOT be the new
        # bounding box!
        # We return square images, which is neccesary since
        # all the images must have the same size in order to form batches
        side = max(w, h) * self.target_dist
        x -= (side - w) / 2
        y -= (side - h) / 2

        # center of the enlarged bounding box
        x0, y0 = x + side/2, y + side/2
        # homothety factor, chosen so the new horizontal dimension will
        # coincide with new_size
        mu_x = self.new_size_x / side
        mu_y = self.new_size_y / side

        # new_w, new_h = new_size, int(h * mu)
        new_w = self.new_size_x
        new_h = self.new_size_y
        new_x0, new_y0 = new_w / 2, new_h / 2

        # dilatation + translation
        affine_transf = np.array([[mu_x, 0, new_x0 - mu_x * x0],
                                  [0, mu_y, new_y0 - mu_y * y0]])

        sample = self.map_affine_transformation(sample, affine_transf,(new_w, new_h))
        if 'landmarks' in sample.keys():
            img_shape = np.array([0, 0, self.new_size_x, self.new_size_y])
            sample['landmarks_float'] = sample['landmarks']
            sample['mask_ldm_float'] = sample['mask_ldm']
            sample['landmarks'] = np.round(sample['landmarks'])
            sample['mask_ldm'], sample['landmarks'] = self.clean_outbbox_landmarks(img_shape, sample['landmarks'],
                                                                                   sample['mask_ldm'])

            if self.img2map_scale:
                sample = self._rescale_map(sample)
        return sample

    def _rescale_map(self, sample):

        # Rescale
        lnd_float = sample['landmarks_float']
        lnd_float[:, 0] = self.map_scale_x * lnd_float[:, 0]
        lnd_float[:, 1] = self.map_scale_y * lnd_float[:, 1]

        # Filter landmarks
        lnd = np.round(lnd_float)
        filter_x = lnd[:, 0] >= self.map_size_x
        filter_y = lnd[:, 1] >= self.map_size_y
        lnd[filter_x] = self.map_size_x - 1
        lnd[filter_y] = self.map_size_y - 1
        new_lnd = (lnd.T * sample['mask_ldm']).T
        new_lnd = new_lnd.astype(int).astype(float)

        sample['landmarks_float'] = lnd_float
        sample['landmarks'] = new_lnd
        sample['img2map_scale'] = [self.map_scale_x, self.map_scale_y]
        return sample



class OcclusionAug:
    def __init__(self, min_length=0.1, max_length=0.4, num_maps=1):
        self.min_length = min_length
        self.max_length = max_length
        self.num_maps = num_maps

    def __call__(self, sample):
        x, y, w, h = sample['bbox']
        image = sample['image']
        landmarks = sample['landmarks']
        vis = sample['visible']

        min_ratio = self.min_length
        max_ratio = self.max_length
        rnd_width = np.random.randint(int(w * min_ratio), int(w * max_ratio))
        rnd_height = np.random.randint(int(h * min_ratio), int(h * max_ratio))

        # (xi, yi) and (xf, yf) are, respectively, the lower left points of the
        # occlusion rectangle and the upper right point.
        xi = int(x + np.random.randint(0, w - rnd_width))
        xf = int(xi + rnd_width)
        yi = int(y + np.random.randint(0, h - rnd_height))
        yf = int(yi + rnd_height)

        pixels = np.array(image)
        pixels[yi:yf, xi:xf, :] = np.random.uniform(0, 255, size=3)
        image = Image.fromarray(pixels)
        sample['image'] = image

        # Update visibilities
        filter_x1 = landmarks[:, 0] >= xi
        filter_x2 = landmarks[:, 0] < xf
        filter_x = np.logical_and(filter_x1, filter_x2)

        filter_y1 = landmarks[:, 1] >= yi
        filter_y2 = landmarks[:, 1] < yf
        filter_y = np.logical_and(filter_y1, filter_y2)

        filter_novis = np.logical_and(filter_x, filter_y)
        filter_vis = np.logical_not(filter_novis)
        sample['visible'] = vis * filter_vis
        return sample


class LightingAug:
    def __init__(self, hsv_range_min=(-0.5, -0.5, -0.5), hsv_range_max=(0.5, 0.5, 0.5)):
        self.hsv_range_min = hsv_range_min
        self.hsv_range_max = hsv_range_max

    def __call__(self, sample):
        # Convert to HSV colorspace from RGB colorspace
        image = np.array(sample['image'])
        hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)

        # Generate new random values
        H = 1 + np.random.uniform(self.hsv_range_min[0], self.hsv_range_max[0])
        S = 1 + np.random.uniform(self.hsv_range_min[1], self.hsv_range_max[1])
        V = 1 + np.random.uniform(self.hsv_range_min[2], self.hsv_range_max[2])
        hsv[:, :, 0] = np.clip(H*hsv[:, :, 0], 0, 179)
        hsv[:, :, 1] = np.clip(S*hsv[:, :, 1], 0, 255)
        hsv[:, :, 2] = np.clip(V*hsv[:, :, 2], 0, 255)
        # Convert back to BGR colorspace
        image = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
        sample['image'] = Image.fromarray(image)

        return sample


class BlurAug:
    def __init__(self, blur_prob=0.5, blur_kernel_range=(0, 2)):
        self.blur_prob = blur_prob
        self.kernel_range = blur_kernel_range

    def __call__(self, sample):
        # Smooth image
        image = np.array(sample['image'])
        if np.random.uniform(0.0, 1.0) < self.blur_prob:
            kernel = np.random.random_integers(self.kernel_range[0], self.kernel_range[1]) * 2 + 1
            image = cv2.GaussianBlur(image, (kernel, kernel), 0, 0)
        sample['image'] = Image.fromarray(image)

        return sample