Spaces:
Running
Running
File size: 11,374 Bytes
d015578 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import random
import cv2
import numpy as np
from PIL import Image
from torchvision import transforms
# My libs
import spiga.data.loaders.augmentors.utils as dlu
class HorizontalFlipAug:
def __init__(self, ldm_flip_order, prob=0.5):
self.prob = prob
self.ldm_flip_order = ldm_flip_order
def __call__(self, sample):
img = sample['image']
landmarks = sample['landmarks']
mask = sample['mask_ldm']
vis = sample['visible']
bbox = sample['bbox']
if random.random() < self.prob:
new_img = transforms.functional.hflip(img)
lm_new_order = self.ldm_flip_order
new_landmarks = landmarks[lm_new_order]
new_landmarks = (new_landmarks - (img.size[0], 0)) * (-1, 1)
new_mask = mask[lm_new_order]
new_vis = vis[lm_new_order]
x, y, w, h = bbox
new_x = img.size[0] - x - w
new_bbox = np.array((new_x, y, w, h))
sample['image'] = new_img
sample['landmarks'] = new_landmarks
sample['mask_ldm'] = new_mask
sample['visible'] = new_vis
sample['bbox'] = new_bbox
return sample
class GeometryBaseAug:
def __call__(self, sample):
raise NotImplementedError('Inheritance __call__ not defined')
def map_affine_transformation(self, sample, affine_transf, new_size=None):
sample['image'] = self._image_affine_trans(sample['image'], affine_transf, new_size)
sample['bbox'] = self._bbox_affine_trans(sample['bbox'], affine_transf)
if 'landmarks' in sample.keys():
sample['landmarks'] = self._landmarks_affine_trans(sample['landmarks'], affine_transf)
return sample
def clean_outbbox_landmarks(self, shape, landmarks, mask):
filter_x1 = landmarks[:, 0] >= shape[0]
filter_x2 = landmarks[:, 0] < (shape[0] + shape[2])
filter_x = np.logical_and(filter_x1,filter_x2)
filter_y1 = landmarks[:, 1] >= shape[1]
filter_y2 = landmarks[:, 1] < (shape[1] + shape[3])
filter_y = np.logical_and(filter_y1, filter_y2)
filter_bbox = np.logical_and(filter_x, filter_y)
new_mask = mask*filter_bbox
new_landmarks = (landmarks.T * new_mask).T
new_landmarks = new_landmarks.astype(int).astype(float)
return new_mask, new_landmarks
def _image_affine_trans(self, image, affine_transf, new_size=None):
if not new_size:
new_size = image.size
inv_affine_transf = dlu.get_inverse_transf(affine_transf)
new_image = image.transform(new_size, Image.AFFINE, inv_affine_transf.flatten())
return new_image
def _bbox_affine_trans(self, bbox, affine_transf):
x, y, w, h = bbox
images_bb = []
for point in ([x, y, 1], [x + w, y, 1],
[x, y + h, 1], [x + w, y + h, 1]):
images_bb.append(affine_transf.dot(point))
images_bb = np.array(images_bb)
new_corner0 = np.min(images_bb, axis=0)
new_corner1 = np.max(images_bb, axis=0)
new_x, new_y = new_corner0
new_w, new_h = new_corner1 - new_corner0
new_bbox = np.array((new_x, new_y, new_w, new_h))
return new_bbox
def _landmarks_affine_trans(self, landmarks, affine_transf):
homog_landmarks = dlu.affine2homogeneous(landmarks)
new_landmarks = affine_transf.dot(homog_landmarks.T).T
return new_landmarks
class RSTAug(GeometryBaseAug):
def __init__(self, angle_range=45., scale_min=-0.15, scale_max=0.15, trl_ratio=0.05):
self.scale_max = scale_max
self.scale_min = scale_min
self.angle_range = angle_range
self.trl_ratio = trl_ratio
def __call__(self, sample):
x, y, w, h = sample['bbox']
x0, y0 = x + w/2, y + h/2 # center of the face, which will be the center of the rotation
# Bbox translation
rnd_Tx = np.random.uniform(-self.trl_ratio, self.trl_ratio) * w
rnd_Ty = np.random.uniform(-self.trl_ratio, self.trl_ratio) * h
sample['bbox'][0] += rnd_Tx
sample['bbox'][1] += rnd_Ty
scale = 1 + np.random.uniform(self.scale_min, self.scale_max)
angle = np.random.uniform(-self.angle_range, self.angle_range)
similarity = dlu.get_similarity_matrix(angle, scale, center=(x0, y0))
new_sample = self.map_affine_transformation(sample, similarity)
return new_sample
class TargetCropAug(GeometryBaseAug):
def __init__(self, img_new_size=128, map_new_size=128, target_dist=1.3):
self.target_dist = target_dist
self.new_size_x, self.new_size_y = self._convert_shapes(img_new_size)
self.map_size_x, self.map_size_y = self._convert_shapes(map_new_size)
self.img2map_scale = False
# Mismatch between img shape and featuremap shape
if self.map_size_x != self.new_size_x or self.map_size_y != self.new_size_y:
self.img2map_scale = True
self.map_scale_x = self.map_size_x / self.new_size_x
self.map_scale_y = self.map_size_y / self.new_size_y
self.map_scale_xx = self.map_scale_x * self.map_scale_x
self.map_scale_xy = self.map_scale_x * self.map_scale_y
self.map_scale_yy = self.map_scale_y * self.map_scale_y
def _convert_shapes(self, new_size):
if isinstance(new_size, (tuple, list)):
new_size_x = new_size[0]
new_size_y = new_size[1]
else:
new_size_x = new_size
new_size_y = new_size
return new_size_x, new_size_y
def __call__(self, sample):
x, y, w, h = sample['bbox']
# we enlarge the area taken around the bounding box
# it is neccesary to change the botton left point of the bounding box
# according to the previous enlargement. Note this will NOT be the new
# bounding box!
# We return square images, which is neccesary since
# all the images must have the same size in order to form batches
side = max(w, h) * self.target_dist
x -= (side - w) / 2
y -= (side - h) / 2
# center of the enlarged bounding box
x0, y0 = x + side/2, y + side/2
# homothety factor, chosen so the new horizontal dimension will
# coincide with new_size
mu_x = self.new_size_x / side
mu_y = self.new_size_y / side
# new_w, new_h = new_size, int(h * mu)
new_w = self.new_size_x
new_h = self.new_size_y
new_x0, new_y0 = new_w / 2, new_h / 2
# dilatation + translation
affine_transf = np.array([[mu_x, 0, new_x0 - mu_x * x0],
[0, mu_y, new_y0 - mu_y * y0]])
sample = self.map_affine_transformation(sample, affine_transf,(new_w, new_h))
if 'landmarks' in sample.keys():
img_shape = np.array([0, 0, self.new_size_x, self.new_size_y])
sample['landmarks_float'] = sample['landmarks']
sample['mask_ldm_float'] = sample['mask_ldm']
sample['landmarks'] = np.round(sample['landmarks'])
sample['mask_ldm'], sample['landmarks'] = self.clean_outbbox_landmarks(img_shape, sample['landmarks'],
sample['mask_ldm'])
if self.img2map_scale:
sample = self._rescale_map(sample)
return sample
def _rescale_map(self, sample):
# Rescale
lnd_float = sample['landmarks_float']
lnd_float[:, 0] = self.map_scale_x * lnd_float[:, 0]
lnd_float[:, 1] = self.map_scale_y * lnd_float[:, 1]
# Filter landmarks
lnd = np.round(lnd_float)
filter_x = lnd[:, 0] >= self.map_size_x
filter_y = lnd[:, 1] >= self.map_size_y
lnd[filter_x] = self.map_size_x - 1
lnd[filter_y] = self.map_size_y - 1
new_lnd = (lnd.T * sample['mask_ldm']).T
new_lnd = new_lnd.astype(int).astype(float)
sample['landmarks_float'] = lnd_float
sample['landmarks'] = new_lnd
sample['img2map_scale'] = [self.map_scale_x, self.map_scale_y]
return sample
class OcclusionAug:
def __init__(self, min_length=0.1, max_length=0.4, num_maps=1):
self.min_length = min_length
self.max_length = max_length
self.num_maps = num_maps
def __call__(self, sample):
x, y, w, h = sample['bbox']
image = sample['image']
landmarks = sample['landmarks']
vis = sample['visible']
min_ratio = self.min_length
max_ratio = self.max_length
rnd_width = np.random.randint(int(w * min_ratio), int(w * max_ratio))
rnd_height = np.random.randint(int(h * min_ratio), int(h * max_ratio))
# (xi, yi) and (xf, yf) are, respectively, the lower left points of the
# occlusion rectangle and the upper right point.
xi = int(x + np.random.randint(0, w - rnd_width))
xf = int(xi + rnd_width)
yi = int(y + np.random.randint(0, h - rnd_height))
yf = int(yi + rnd_height)
pixels = np.array(image)
pixels[yi:yf, xi:xf, :] = np.random.uniform(0, 255, size=3)
image = Image.fromarray(pixels)
sample['image'] = image
# Update visibilities
filter_x1 = landmarks[:, 0] >= xi
filter_x2 = landmarks[:, 0] < xf
filter_x = np.logical_and(filter_x1, filter_x2)
filter_y1 = landmarks[:, 1] >= yi
filter_y2 = landmarks[:, 1] < yf
filter_y = np.logical_and(filter_y1, filter_y2)
filter_novis = np.logical_and(filter_x, filter_y)
filter_vis = np.logical_not(filter_novis)
sample['visible'] = vis * filter_vis
return sample
class LightingAug:
def __init__(self, hsv_range_min=(-0.5, -0.5, -0.5), hsv_range_max=(0.5, 0.5, 0.5)):
self.hsv_range_min = hsv_range_min
self.hsv_range_max = hsv_range_max
def __call__(self, sample):
# Convert to HSV colorspace from RGB colorspace
image = np.array(sample['image'])
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
# Generate new random values
H = 1 + np.random.uniform(self.hsv_range_min[0], self.hsv_range_max[0])
S = 1 + np.random.uniform(self.hsv_range_min[1], self.hsv_range_max[1])
V = 1 + np.random.uniform(self.hsv_range_min[2], self.hsv_range_max[2])
hsv[:, :, 0] = np.clip(H*hsv[:, :, 0], 0, 179)
hsv[:, :, 1] = np.clip(S*hsv[:, :, 1], 0, 255)
hsv[:, :, 2] = np.clip(V*hsv[:, :, 2], 0, 255)
# Convert back to BGR colorspace
image = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
sample['image'] = Image.fromarray(image)
return sample
class BlurAug:
def __init__(self, blur_prob=0.5, blur_kernel_range=(0, 2)):
self.blur_prob = blur_prob
self.kernel_range = blur_kernel_range
def __call__(self, sample):
# Smooth image
image = np.array(sample['image'])
if np.random.uniform(0.0, 1.0) < self.blur_prob:
kernel = np.random.random_integers(self.kernel_range[0], self.kernel_range[1]) * 2 + 1
image = cv2.GaussianBlur(image, (kernel, kernel), 0, 0)
sample['image'] = Image.fromarray(image)
return sample
|