File size: 7,431 Bytes
98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 98fed26 d5d4264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import shutil
import uuid
import subprocess
import gradio as gr
import cv2
import sys
from glob import glob
from pathlib import Path
# 获取当前Python解释器路径
#PYTHON_EXECUTABLE = sys.executable
PYTHON_EXECUTABLE = "python"
def normalize_path(path: str) -> str:
"""标准化路径,将Windows路径转换为正斜杠形式"""
return str(Path(path).resolve()).replace('\\', '/')
def check_video_frames(video_path: str) -> int:
"""检查视频帧数"""
video_path = normalize_path(video_path)
cap = cv2.VideoCapture(video_path)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return frame_count
def preprocess_video(video_path: str) -> str:
"""预处理视频到14帧"""
try:
video_path = normalize_path(video_path)
unique_id = str(uuid.uuid4())
temp_dir = "outputs"
output_dir = os.path.join(temp_dir, f"processed_{unique_id}")
output_dir = normalize_path(output_dir)
os.makedirs(output_dir, exist_ok=True)
print(f"Processing video: {video_path}")
print(f"Output directory: {output_dir}")
# 调用process_video_to_14frames.py处理视频
result = subprocess.run(
[
PYTHON_EXECUTABLE, "process_video_to_14frames.py",
"--input", video_path,
"--output", output_dir
],
check=True,
capture_output=True,
text=True
)
if result.stdout:
print(f"Preprocessing stdout: {result.stdout}")
if result.stderr:
print(f"Preprocessing stderr: {result.stderr}")
# 获取处理后的视频路径
processed_videos = glob(os.path.join(output_dir, "*.mp4"))
if not processed_videos:
raise gr.Error("Failed to process video: No output video found")
return normalize_path(processed_videos[0])
except subprocess.CalledProcessError as e:
print(f"Preprocessing stderr: {e.stderr}")
raise gr.Error(f"Failed to preprocess video: {e.stderr}")
except Exception as e:
raise gr.Error(f"Error during video preprocessing: {str(e)}")
def generate(control_sequence, ref_image):
try:
# 验证输入文件是否存在
control_sequence = normalize_path(control_sequence)
ref_image = normalize_path(ref_image)
if not os.path.exists(control_sequence):
raise gr.Error(f"Control sequence file not found: {control_sequence}")
if not os.path.exists(ref_image):
raise gr.Error(f"Reference image file not found: {ref_image}")
# 创建输出目录
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
unique_id = str(uuid.uuid4())
result_dir = os.path.join(output_dir, f"results_{unique_id}")
result_dir = normalize_path(result_dir)
os.makedirs(result_dir, exist_ok=True)
print(f"Input control sequence: {control_sequence}")
print(f"Input reference image: {ref_image}")
print(f"Output directory: {result_dir}")
# 检查视频帧数
frame_count = check_video_frames(control_sequence)
if frame_count != 14:
print(f"Video has {frame_count} frames, preprocessing to 14 frames...")
control_sequence = preprocess_video(control_sequence)
print(f"Preprocessed video saved to: {control_sequence}")
# 运行推理命令
print(f"Running inference...")
result = subprocess.run(
[
PYTHON_EXECUTABLE, "scripts_infer/anidoc_inference.py",
"--all_sketch",
"--matching",
"--tracking",
"--control_image", control_sequence,
"--ref_image", ref_image,
"--output_dir", result_dir,
"--max_point", "10",
],
check=True,
capture_output=True,
text=True
)
if result.stdout:
print(f"Inference stdout: {result.stdout}")
if result.stderr:
print(f"Inference stderr: {result.stderr}")
# 搜索输出视频
output_video = glob(os.path.join(result_dir, "*.mp4"))
print(f"Found output videos: {output_video}")
if output_video:
output_video_path = normalize_path(output_video[0])
print(f"Returning output video: {output_video_path}")
else:
raise gr.Error("No output video generated")
# 清理临时文件
temp_dirs = glob("outputs/processed_*")
for temp_dir in temp_dirs:
if os.path.isdir(temp_dir):
try:
shutil.rmtree(temp_dir)
print(f"Cleaned up temp directory: {temp_dir}")
except Exception as e:
print(f"Warning: Failed to clean up temp directory {temp_dir}: {str(e)}")
return output_video_path
except subprocess.CalledProcessError as e:
print(f"Inference stderr: {e.stderr}")
raise gr.Error(f"Error during inference: {e.stderr}")
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# AniDoc: Animation Creation Made Easier")
gr.Markdown("AniDoc colorizes a sequence of sketches based on a character design reference with high fidelity, even when the sketches significantly differ in pose and scale.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/yihao-meng/AniDoc">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://yihao-meng.github.io/AniDoc_demo/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2412.14173">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
control_sequence = gr.Video(label="Control Sequence", format="mp4")
ref_image = gr.Image(label="Reference Image", type="filepath")
submit_btn = gr.Button("Submit")
with gr.Column():
video_result = gr.Video(label="Result")
gr.Examples(
examples = [
["data_test/sample5.mp4", "data_test/sample5.png"],
["data_test/sample1.mp4", "data_test/sample1.png"],
["data_test/sample2.mp4", "data_test/sample2.png"],
["data_test/sample3.mp4", "data_test/sample3.png"],
["data_test/sample4.mp4", "data_test/sample4.png"]
],
inputs = [control_sequence, ref_image]
)
submit_btn.click(
fn = generate,
inputs = [control_sequence, ref_image],
outputs = [video_result]
)
demo.queue().launch(inbrowser=True,show_api=False, show_error=True, share = True) |