|
|
|
|
|
import os |
|
import torch |
|
from torch import nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class PixelLoss(nn.Module): |
|
def __init__(self) -> None: |
|
super(PixelLoss, self).__init__() |
|
|
|
self.criterion = torch.nn.L1Loss().cuda() |
|
|
|
def forward(self, gen_hr, org_hr, batch_idx): |
|
|
|
|
|
pixel_loss = self.criterion(gen_hr, org_hr) |
|
|
|
return pixel_loss |
|
|
|
|
|
class L1_Charbonnier_loss(nn.Module): |
|
"""L1 Charbonnierloss.""" |
|
def __init__(self): |
|
super(L1_Charbonnier_loss, self).__init__() |
|
self.eps = 1e-6 |
|
|
|
def forward(self, X, Y, batch_idx): |
|
diff = torch.add(X, -Y) |
|
error = torch.sqrt(diff * diff + self.eps) |
|
loss = torch.mean(error) |
|
return loss |
|
|
|
|
|
|
|
""" |
|
Created on Thu Dec 3 00:28:15 2020 |
|
@author: Yunpeng Li, Tianjin University |
|
""" |
|
class MS_SSIM_L1_LOSS(nn.Module): |
|
|
|
def __init__(self, alpha, |
|
gaussian_sigmas=[0.5, 1.0, 2.0, 4.0, 8.0], |
|
data_range = 1.0, |
|
K=(0.01, 0.4), |
|
compensation=1.0, |
|
cuda_dev=0,): |
|
super(MS_SSIM_L1_LOSS, self).__init__() |
|
self.DR = data_range |
|
self.C1 = (K[0] * data_range) ** 2 |
|
self.C2 = (K[1] * data_range) ** 2 |
|
self.pad = int(2 * gaussian_sigmas[-1]) |
|
self.alpha = alpha |
|
self.compensation=compensation |
|
filter_size = int(4 * gaussian_sigmas[-1] + 1) |
|
g_masks = torch.zeros((3*len(gaussian_sigmas), 1, filter_size, filter_size)) |
|
for idx, sigma in enumerate(gaussian_sigmas): |
|
|
|
g_masks[3*idx+0, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) |
|
g_masks[3*idx+1, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) |
|
g_masks[3*idx+2, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma) |
|
self.g_masks = g_masks.cuda(cuda_dev) |
|
|
|
from torch.utils.tensorboard import SummaryWriter |
|
self.writer = SummaryWriter() |
|
|
|
def _fspecial_gauss_1d(self, size, sigma): |
|
"""Create 1-D gauss kernel |
|
Args: |
|
size (int): the size of gauss kernel |
|
sigma (float): sigma of normal distribution |
|
|
|
Returns: |
|
torch.Tensor: 1D kernel (size) |
|
""" |
|
coords = torch.arange(size).to(dtype=torch.float) |
|
coords -= size // 2 |
|
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2)) |
|
g /= g.sum() |
|
return g.reshape(-1) |
|
|
|
def _fspecial_gauss_2d(self, size, sigma): |
|
"""Create 2-D gauss kernel |
|
Args: |
|
size (int): the size of gauss kernel |
|
sigma (float): sigma of normal distribution |
|
|
|
Returns: |
|
torch.Tensor: 2D kernel (size x size) |
|
""" |
|
gaussian_vec = self._fspecial_gauss_1d(size, sigma) |
|
return torch.outer(gaussian_vec, gaussian_vec) |
|
|
|
def forward(self, x, y, batch_idx): |
|
''' |
|
Args: |
|
x (tensor): the input for a tensor |
|
y (tensor): the input for another tensor |
|
batch_idx (int): the iteration now |
|
Returns: |
|
combined_loss (torch): loss value of L1 with MS-SSIM loss |
|
''' |
|
|
|
|
|
mux = F.conv2d(x, self.g_masks, groups=3, padding=self.pad) |
|
muy = F.conv2d(y, self.g_masks, groups=3, padding=self.pad) |
|
|
|
mux2 = mux * mux |
|
muy2 = muy * muy |
|
muxy = mux * muy |
|
|
|
sigmax2 = F.conv2d(x * x, self.g_masks, groups=3, padding=self.pad) - mux2 |
|
sigmay2 = F.conv2d(y * y, self.g_masks, groups=3, padding=self.pad) - muy2 |
|
sigmaxy = F.conv2d(x * y, self.g_masks, groups=3, padding=self.pad) - muxy |
|
|
|
|
|
l = (2 * muxy + self.C1) / (mux2 + muy2 + self.C1) |
|
cs = (2 * sigmaxy + self.C2) / (sigmax2 + sigmay2 + self.C2) |
|
|
|
lM = l[:, -1, :, :] * l[:, -2, :, :] * l[:, -3, :, :] |
|
PIcs = cs.prod(dim=1) |
|
|
|
loss_ms_ssim = 1 - lM*PIcs |
|
|
|
loss_l1 = F.l1_loss(x, y, reduction='none') |
|
|
|
gaussian_l1 = F.conv2d(loss_l1, self.g_masks.narrow(dim=0, start=-3, length=3), |
|
groups=3, padding=self.pad).mean(1) |
|
|
|
loss_mix = self.alpha * loss_ms_ssim + (1 - self.alpha) * gaussian_l1 / self.DR |
|
loss_mix = self.compensation*loss_mix |
|
|
|
combined_loss = loss_mix.mean() |
|
|
|
self.writer.add_scalar('Loss/ms_ssim_loss-iteration', loss_ms_ssim.mean(), batch_idx) |
|
self.writer.add_scalar('Loss/l1_loss-iteration', gaussian_l1.mean(), batch_idx) |
|
|
|
return combined_loss |
|
|