|
|
|
|
|
''' |
|
From ESRGAN |
|
''' |
|
|
|
|
|
import os, sys |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
from scipy import special |
|
import random |
|
import math |
|
from torchvision.utils import make_grid |
|
|
|
from degradation.ESR.degradations_functionality import * |
|
|
|
root_path = os.path.abspath('.') |
|
sys.path.append(root_path) |
|
|
|
|
|
def np2tensor(np_frame): |
|
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).cuda().float()/255 |
|
|
|
def tensor2np(tensor): |
|
|
|
return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (1, 2, 0))) * 255 |
|
|
|
def mass_tensor2np(tensor): |
|
''' The input tensor is massive tensor |
|
''' |
|
return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (0, 2, 3, 1))) * 255 |
|
|
|
def save_img(tensor, save_name): |
|
np_img = tensor2np(tensor)[:,:,16] |
|
|
|
cv2.imwrite(save_name, np_img) |
|
|
|
|
|
def filter2D(img, kernel): |
|
"""PyTorch version of cv2.filter2D |
|
|
|
Args: |
|
img (Tensor): (b, c, h, w) |
|
kernel (Tensor): (b, k, k) |
|
""" |
|
k = kernel.size(-1) |
|
b, c, h, w = img.size() |
|
if k % 2 == 1: |
|
img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect') |
|
else: |
|
raise ValueError('Wrong kernel size') |
|
|
|
ph, pw = img.size()[-2:] |
|
|
|
if kernel.size(0) == 1: |
|
|
|
img = img.view(b * c, 1, ph, pw) |
|
kernel = kernel.view(1, 1, k, k) |
|
return F.conv2d(img, kernel, padding=0).view(b, c, h, w) |
|
else: |
|
img = img.view(1, b * c, ph, pw) |
|
kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k) |
|
return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w) |
|
|
|
|
|
def generate_kernels(opt): |
|
|
|
kernel_range = [2 * v + 1 for v in range(opt["kernel_range"][0], opt["kernel_range"][1])] |
|
|
|
|
|
kernel_size = random.choice(kernel_range) |
|
if np.random.uniform() < opt['sinc_prob']: |
|
|
|
|
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel = random_mixed_kernels( |
|
opt['kernel_list'], |
|
opt['kernel_prob'], |
|
kernel_size, |
|
opt['blur_sigma'], |
|
opt['blur_sigma'], [-math.pi, math.pi], |
|
opt['betag_range'], |
|
opt['betap_range'], |
|
noise_range=None) |
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
|
|
|
|
kernel_size = random.choice(kernel_range) |
|
if np.random.uniform() < opt['sinc_prob2']: |
|
|
|
if kernel_size < 13: |
|
omega_c = np.random.uniform(np.pi / 3, np.pi) |
|
else: |
|
omega_c = np.random.uniform(np.pi / 5, np.pi) |
|
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) |
|
else: |
|
kernel2 = random_mixed_kernels( |
|
opt['kernel_list2'], |
|
opt['kernel_prob2'], |
|
kernel_size, |
|
opt['blur_sigma2'], |
|
opt['blur_sigma2'], [-math.pi, math.pi], |
|
opt['betag_range2'], |
|
opt['betap_range2'], |
|
noise_range=None) |
|
|
|
|
|
pad_size = (21 - kernel_size) // 2 |
|
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) |
|
|
|
kernel = torch.FloatTensor(kernel) |
|
kernel2 = torch.FloatTensor(kernel2) |
|
return (kernel, kernel2) |
|
|
|
|
|
|