|
import math |
|
from abc import ABC |
|
from math import prod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import DropPath |
|
|
|
|
|
from architecture.grl_common.mixed_attn_block import ( |
|
AnchorProjection, |
|
CAB, |
|
CPB_MLP, |
|
QKVProjection, |
|
) |
|
from architecture.grl_common.ops import ( |
|
window_partition, |
|
window_reverse, |
|
) |
|
from architecture.grl_common.swin_v1_block import Mlp |
|
|
|
|
|
class AffineTransform(nn.Module): |
|
r"""Affine transformation of the attention map. |
|
The window could be a square window or a stripe window. Supports attention between different window sizes |
|
""" |
|
|
|
def __init__(self, num_heads): |
|
super(AffineTransform, self).__init__() |
|
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) |
|
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) |
|
|
|
|
|
self.cpb_mlp = CPB_MLP(2, num_heads) |
|
|
|
def forward(self, attn, relative_coords_table, relative_position_index, mask): |
|
B_, H, N1, N2 = attn.shape |
|
|
|
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() |
|
|
|
bias_table = self.cpb_mlp(relative_coords_table) |
|
bias_table = bias_table.view(-1, H) |
|
|
|
bias = bias_table[relative_position_index.view(-1)] |
|
bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous() |
|
|
|
bias = 16 * torch.sigmoid(bias) |
|
attn = attn + bias.unsqueeze(0) |
|
|
|
|
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
mask = mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(B_ // nW, nW, H, N1, N2) + mask |
|
attn = attn.view(-1, H, N1, N2) |
|
|
|
return attn |
|
|
|
|
|
def _get_stripe_info(stripe_size_in, stripe_groups_in, stripe_shift, input_resolution): |
|
stripe_size, shift_size = [], [] |
|
for s, g, d in zip(stripe_size_in, stripe_groups_in, input_resolution): |
|
if g is None: |
|
stripe_size.append(s) |
|
shift_size.append(s // 2 if stripe_shift else 0) |
|
else: |
|
stripe_size.append(d // g) |
|
shift_size.append(0 if g == 1 else d // (g * 2)) |
|
return stripe_size, shift_size |
|
|
|
|
|
class Attention(ABC, nn.Module): |
|
def __init__(self): |
|
super(Attention, self).__init__() |
|
|
|
def attn(self, q, k, v, attn_transform, table, index, mask, reshape=True): |
|
|
|
|
|
B_, _, H, head_dim = q.shape |
|
if self.euclidean_dist: |
|
|
|
attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1) |
|
else: |
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
attn = attn_transform(attn, table, index, mask) |
|
|
|
attn = self.softmax(attn) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
if reshape: |
|
x = x.transpose(1, 2).reshape(B_, -1, H * head_dim) |
|
|
|
return x |
|
|
|
|
|
class WindowAttention(Attention): |
|
r"""Window attention. QKV is the input to the forward method. |
|
Args: |
|
num_heads (int): Number of attention heads. |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_resolution, |
|
window_size, |
|
num_heads, |
|
window_shift=False, |
|
attn_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
args=None, |
|
): |
|
|
|
super(WindowAttention, self).__init__() |
|
self.input_resolution = input_resolution |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
self.shift_size = window_size[0] // 2 if window_shift else 0 |
|
self.euclidean_dist = args.euclidean_dist |
|
|
|
self.attn_transform = AffineTransform(num_heads) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, qkv, x_size, table, index, mask): |
|
""" |
|
Args: |
|
qkv: input QKV features with shape of (B, L, 3C) |
|
x_size: use x_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
H, W = x_size |
|
B, L, C = qkv.shape |
|
qkv = qkv.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
qkv = torch.roll( |
|
qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
|
|
|
|
qkv = window_partition(qkv, self.window_size) |
|
qkv = qkv.view(-1, prod(self.window_size), C) |
|
|
|
B_, N, _ = qkv.shape |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
x = self.attn(q, k, v, self.attn_transform, table, index, mask) |
|
|
|
|
|
x = x.view(-1, *self.window_size, C // 3) |
|
x = window_reverse(x, self.window_size, x_size) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
x = x.view(B, L, C // 3) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, " |
|
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" |
|
) |
|
|
|
def flops(self, N): |
|
pass |
|
|
|
|
|
class AnchorStripeAttention(Attention): |
|
r"""Stripe attention |
|
Args: |
|
stripe_size (tuple[int]): The height and width of the stripe. |
|
num_heads (int): Number of attention heads. |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads, |
|
attn_drop=0.0, |
|
pretrained_stripe_size=[0, 0], |
|
anchor_window_down_factor=1, |
|
args=None, |
|
): |
|
|
|
super(AnchorStripeAttention, self).__init__() |
|
self.input_resolution = input_resolution |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.stripe_shift = stripe_shift |
|
self.num_heads = num_heads |
|
self.pretrained_stripe_size = pretrained_stripe_size |
|
self.anchor_window_down_factor = anchor_window_down_factor |
|
self.euclidean_dist = args.euclidean_dist |
|
|
|
self.attn_transform1 = AffineTransform(num_heads) |
|
self.attn_transform2 = AffineTransform(num_heads) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward( |
|
self, qkv, anchor, x_size, table, index_a2w, index_w2a, mask_a2w, mask_w2a |
|
): |
|
""" |
|
Args: |
|
qkv: input features with shape of (B, L, C) |
|
anchor: |
|
x_size: use stripe_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
H, W = x_size |
|
B, L, C = qkv.shape |
|
qkv = qkv.view(B, H, W, C) |
|
|
|
stripe_size, shift_size = _get_stripe_info( |
|
self.stripe_size, self.stripe_groups, self.stripe_shift, x_size |
|
) |
|
anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size] |
|
anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size] |
|
|
|
if self.stripe_shift: |
|
qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) |
|
anchor = torch.roll( |
|
anchor, |
|
shifts=(-anchor_shift_size[0], -anchor_shift_size[1]), |
|
dims=(1, 2), |
|
) |
|
|
|
|
|
qkv = window_partition(qkv, stripe_size) |
|
qkv = qkv.view(-1, prod(stripe_size), C) |
|
anchor = window_partition(anchor, anchor_stripe_size) |
|
anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3) |
|
|
|
B_, N1, _ = qkv.shape |
|
N2 = anchor.shape[1] |
|
qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3) |
|
|
|
|
|
x = self.attn( |
|
anchor, k, v, self.attn_transform1, table, index_a2w, mask_a2w, False |
|
) |
|
x = self.attn(q, anchor, x, self.attn_transform2, table, index_w2a, mask_w2a) |
|
|
|
|
|
x = x.view(B_, *stripe_size, C // 3) |
|
x = window_reverse(x, stripe_size, x_size) |
|
|
|
|
|
if self.stripe_shift: |
|
x = torch.roll(x, shifts=shift_size, dims=(1, 2)) |
|
|
|
x = x.view(B, H * W, C // 3) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " |
|
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}" |
|
) |
|
|
|
def flops(self, N): |
|
pass |
|
|
|
|
|
class MixedAttention(nn.Module): |
|
r"""Mixed window attention and stripe attention |
|
Args: |
|
dim (int): Number of input channels. |
|
stripe_size (tuple[int]): The height and width of the stripe. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size, |
|
window_shift, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
qkv_bias=True, |
|
qkv_proj_type="linear", |
|
anchor_proj_type="separable_conv", |
|
anchor_one_stage=True, |
|
anchor_window_down_factor=1, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
pretrained_stripe_size=[0, 0], |
|
args=None, |
|
): |
|
|
|
super(MixedAttention, self).__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.args = args |
|
|
|
self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args) |
|
|
|
self.anchor = AnchorProjection( |
|
dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args |
|
) |
|
|
|
self.window_attn = WindowAttention( |
|
input_resolution, |
|
window_size, |
|
num_heads_w, |
|
window_shift, |
|
attn_drop, |
|
pretrained_window_size, |
|
args, |
|
) |
|
self.stripe_attn = AnchorStripeAttention( |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads_s, |
|
attn_drop, |
|
pretrained_stripe_size, |
|
anchor_window_down_factor, |
|
args, |
|
) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, x_size, table_index_mask): |
|
""" |
|
Args: |
|
x: input features with shape of (B, L, C) |
|
stripe_size: use stripe_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
B, L, C = x.shape |
|
|
|
|
|
qkv = self.qkv(x, x_size) |
|
qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1) |
|
|
|
anchor = self.anchor(x, x_size) |
|
|
|
|
|
x_window = self.window_attn( |
|
qkv_window, x_size, *self._get_table_index_mask(table_index_mask, True) |
|
) |
|
x_stripe = self.stripe_attn( |
|
qkv_stripe, |
|
anchor, |
|
x_size, |
|
*self._get_table_index_mask(table_index_mask, False), |
|
) |
|
x = torch.cat([x_window, x_stripe], dim=-1) |
|
|
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def _get_table_index_mask(self, table_index_mask, window_attn=True): |
|
if window_attn: |
|
return ( |
|
table_index_mask["table_w"], |
|
table_index_mask["index_w"], |
|
table_index_mask["mask_w"], |
|
) |
|
else: |
|
return ( |
|
table_index_mask["table_s"], |
|
table_index_mask["index_a2w"], |
|
table_index_mask["index_w2a"], |
|
table_index_mask["mask_a2w"], |
|
table_index_mask["mask_w2a"], |
|
) |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}" |
|
|
|
def flops(self, N): |
|
pass |
|
|
|
|
|
class EfficientMixAttnTransformerBlock(nn.Module): |
|
r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_stripe_size (int): Window size in pre-training. |
|
attn_type (str, optional): Attention type. Default: cwhv. |
|
c: residual blocks |
|
w: window attention |
|
h: horizontal stripe attention |
|
v: vertical stripe attention |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size=7, |
|
window_shift=False, |
|
stripe_size=[8, 8], |
|
stripe_groups=[None, None], |
|
stripe_shift=False, |
|
stripe_type="H", |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qkv_proj_type="linear", |
|
anchor_proj_type="separable_conv", |
|
anchor_one_stage=True, |
|
anchor_window_down_factor=1, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
pretrained_window_size=[0, 0], |
|
pretrained_stripe_size=[0, 0], |
|
res_scale=1.0, |
|
args=None, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads_w = num_heads_w |
|
self.num_heads_s = num_heads_s |
|
self.window_size = window_size |
|
self.window_shift = window_shift |
|
self.stripe_shift = stripe_shift |
|
self.stripe_type = stripe_type |
|
self.args = args |
|
if self.stripe_type == "W": |
|
self.stripe_size = stripe_size[::-1] |
|
self.stripe_groups = stripe_groups[::-1] |
|
else: |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.mlp_ratio = mlp_ratio |
|
self.res_scale = res_scale |
|
|
|
self.attn = MixedAttention( |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size, |
|
window_shift, |
|
self.stripe_size, |
|
self.stripe_groups, |
|
stripe_shift, |
|
qkv_bias, |
|
qkv_proj_type, |
|
anchor_proj_type, |
|
anchor_one_stage, |
|
anchor_window_down_factor, |
|
attn_drop, |
|
drop, |
|
pretrained_window_size, |
|
pretrained_stripe_size, |
|
args, |
|
) |
|
self.norm1 = norm_layer(dim) |
|
if self.args.local_connection: |
|
self.conv = CAB(dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.norm2 = norm_layer(dim) |
|
|
|
def _get_table_index_mask(self, all_table_index_mask): |
|
table_index_mask = { |
|
"table_w": all_table_index_mask["table_w"], |
|
"index_w": all_table_index_mask["index_w"], |
|
} |
|
if self.stripe_type == "W": |
|
table_index_mask["table_s"] = all_table_index_mask["table_sv"] |
|
table_index_mask["index_a2w"] = all_table_index_mask["index_sv_a2w"] |
|
table_index_mask["index_w2a"] = all_table_index_mask["index_sv_w2a"] |
|
else: |
|
table_index_mask["table_s"] = all_table_index_mask["table_sh"] |
|
table_index_mask["index_a2w"] = all_table_index_mask["index_sh_a2w"] |
|
table_index_mask["index_w2a"] = all_table_index_mask["index_sh_w2a"] |
|
if self.window_shift: |
|
table_index_mask["mask_w"] = all_table_index_mask["mask_w"] |
|
else: |
|
table_index_mask["mask_w"] = None |
|
if self.stripe_shift: |
|
if self.stripe_type == "W": |
|
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sv_a2w"] |
|
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sv_w2a"] |
|
else: |
|
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sh_a2w"] |
|
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sh_w2a"] |
|
else: |
|
table_index_mask["mask_a2w"] = None |
|
table_index_mask["mask_w2a"] = None |
|
return table_index_mask |
|
|
|
def forward(self, x, x_size, all_table_index_mask): |
|
|
|
table_index_mask = self._get_table_index_mask(all_table_index_mask) |
|
if self.args.local_connection: |
|
x = ( |
|
x |
|
+ self.res_scale |
|
* self.drop_path(self.norm1(self.attn(x, x_size, table_index_mask))) |
|
+ self.conv(x, x_size) |
|
) |
|
else: |
|
x = x + self.res_scale * self.drop_path( |
|
self.norm1(self.attn(x, x_size, table_index_mask)) |
|
) |
|
|
|
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), " |
|
f"window_size={self.window_size}, window_shift={self.window_shift}, " |
|
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, " |
|
f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" |
|
) |
|
|
|
def flops(self): |
|
pass |
|
|