|
import math |
|
from abc import ABC |
|
from math import prod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from architecture.grl_common.ops import ( |
|
bchw_to_bhwc, |
|
bchw_to_blc, |
|
blc_to_bchw, |
|
blc_to_bhwc, |
|
calculate_mask, |
|
calculate_mask_all, |
|
get_relative_coords_table_all, |
|
get_relative_position_index_simple, |
|
window_partition, |
|
window_reverse, |
|
) |
|
from architecture.grl_common.swin_v1_block import Mlp |
|
from timm.models.layers import DropPath |
|
|
|
|
|
class CPB_MLP(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, channels=512): |
|
m = [ |
|
nn.Linear(in_channels, channels, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channels, out_channels, bias=False), |
|
] |
|
super(CPB_MLP, self).__init__(*m) |
|
|
|
|
|
class AffineTransformWindow(nn.Module): |
|
r"""Affine transformation of the attention map. |
|
The window is a square window. |
|
Supports attention between different window sizes |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_heads, |
|
input_resolution, |
|
window_size, |
|
pretrained_window_size=[0, 0], |
|
shift_size=0, |
|
anchor_window_down_factor=1, |
|
args=None, |
|
): |
|
super(AffineTransformWindow, self).__init__() |
|
|
|
self.num_heads = num_heads |
|
self.input_resolution = input_resolution |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.shift_size = shift_size |
|
self.anchor_window_down_factor = anchor_window_down_factor |
|
self.use_buffer = args.use_buffer |
|
|
|
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) |
|
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) |
|
|
|
|
|
self.cpb_mlp = CPB_MLP(2, num_heads) |
|
if self.use_buffer: |
|
table = get_relative_coords_table_all( |
|
window_size, pretrained_window_size, anchor_window_down_factor |
|
) |
|
index = get_relative_position_index_simple( |
|
window_size, anchor_window_down_factor |
|
) |
|
self.register_buffer("relative_coords_table", table) |
|
self.register_buffer("relative_position_index", index) |
|
|
|
if self.shift_size > 0: |
|
attn_mask = calculate_mask( |
|
input_resolution, self.window_size, self.shift_size |
|
) |
|
else: |
|
attn_mask = None |
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def forward(self, attn, x_size): |
|
B_, H, N, _ = attn.shape |
|
device = attn.device |
|
|
|
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() |
|
|
|
|
|
if self.use_buffer: |
|
table = self.relative_coords_table |
|
index = self.relative_position_index |
|
else: |
|
table = get_relative_coords_table_all( |
|
self.window_size, |
|
self.pretrained_window_size, |
|
self.anchor_window_down_factor, |
|
).to(device) |
|
index = get_relative_position_index_simple( |
|
self.window_size, self.anchor_window_down_factor |
|
).to(device) |
|
|
|
bias_table = self.cpb_mlp(table) |
|
bias_table = bias_table.view(-1, self.num_heads) |
|
|
|
win_dim = prod(self.window_size) |
|
bias = bias_table[index.view(-1)] |
|
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() |
|
|
|
bias = 16 * torch.sigmoid(bias) |
|
attn = attn + bias.unsqueeze(0) |
|
|
|
|
|
if self.use_buffer: |
|
mask = self.attn_mask |
|
|
|
if self.input_resolution != x_size and self.shift_size > 0: |
|
mask = calculate_mask(x_size, self.window_size, self.shift_size) |
|
mask = mask.to(attn.device) |
|
else: |
|
if self.shift_size > 0: |
|
mask = calculate_mask(x_size, self.window_size, self.shift_size) |
|
mask = mask.to(attn.device) |
|
else: |
|
mask = None |
|
|
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
mask = mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
|
return attn |
|
|
|
|
|
class AffineTransformStripe(nn.Module): |
|
r"""Affine transformation of the attention map. |
|
The window is a stripe window. Supports attention between different window sizes |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_heads, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
pretrained_stripe_size=[0, 0], |
|
anchor_window_down_factor=1, |
|
window_to_anchor=True, |
|
args=None, |
|
): |
|
super(AffineTransformStripe, self).__init__() |
|
self.num_heads = num_heads |
|
self.input_resolution = input_resolution |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.pretrained_stripe_size = pretrained_stripe_size |
|
|
|
self.stripe_shift = stripe_shift |
|
stripe_size, shift_size = self._get_stripe_info(input_resolution) |
|
self.anchor_window_down_factor = anchor_window_down_factor |
|
self.window_to_anchor = window_to_anchor |
|
self.use_buffer = args.use_buffer |
|
|
|
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) |
|
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) |
|
|
|
|
|
self.cpb_mlp = CPB_MLP(2, num_heads) |
|
if self.use_buffer: |
|
table = get_relative_coords_table_all( |
|
stripe_size, pretrained_stripe_size, anchor_window_down_factor |
|
) |
|
index = get_relative_position_index_simple( |
|
stripe_size, anchor_window_down_factor, window_to_anchor |
|
) |
|
self.register_buffer("relative_coords_table", table) |
|
self.register_buffer("relative_position_index", index) |
|
|
|
if self.stripe_shift: |
|
attn_mask = calculate_mask_all( |
|
input_resolution, |
|
stripe_size, |
|
shift_size, |
|
anchor_window_down_factor, |
|
window_to_anchor, |
|
) |
|
else: |
|
attn_mask = None |
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def forward(self, attn, x_size): |
|
B_, H, N1, N2 = attn.shape |
|
device = attn.device |
|
|
|
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() |
|
|
|
|
|
stripe_size, shift_size = self._get_stripe_info(x_size) |
|
fixed_stripe_size = ( |
|
self.stripe_groups[0] is None and self.stripe_groups[1] is None |
|
) |
|
if not self.use_buffer or ( |
|
self.use_buffer |
|
and self.input_resolution != x_size |
|
and not fixed_stripe_size |
|
): |
|
|
|
pretrained_stripe_size = ( |
|
self.pretrained_stripe_size |
|
) |
|
table = get_relative_coords_table_all( |
|
stripe_size, pretrained_stripe_size, self.anchor_window_down_factor |
|
) |
|
table = table.to(device) |
|
index = get_relative_position_index_simple( |
|
stripe_size, self.anchor_window_down_factor, self.window_to_anchor |
|
).to(device) |
|
else: |
|
table = self.relative_coords_table |
|
index = self.relative_position_index |
|
|
|
|
|
|
|
|
|
|
|
bias_table = self.cpb_mlp(table).view(-1, self.num_heads) |
|
|
|
|
|
bias = bias_table[index.view(-1)] |
|
bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous() |
|
|
|
bias = 16 * torch.sigmoid(bias) |
|
|
|
attn = attn + bias.unsqueeze(0) |
|
|
|
|
|
if self.use_buffer: |
|
mask = self.attn_mask |
|
|
|
if self.input_resolution != x_size and self.stripe_shift > 0: |
|
mask = calculate_mask_all( |
|
x_size, |
|
stripe_size, |
|
shift_size, |
|
self.anchor_window_down_factor, |
|
self.window_to_anchor, |
|
) |
|
mask = mask.to(device) |
|
else: |
|
if self.stripe_shift > 0: |
|
mask = calculate_mask_all( |
|
x_size, |
|
stripe_size, |
|
shift_size, |
|
self.anchor_window_down_factor, |
|
self.window_to_anchor, |
|
) |
|
mask = mask.to(attn.device) |
|
else: |
|
mask = None |
|
|
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
mask = mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N1, N2) + mask |
|
attn = attn.view(-1, self.num_heads, N1, N2) |
|
|
|
return attn |
|
|
|
def _get_stripe_info(self, input_resolution): |
|
stripe_size, shift_size = [], [] |
|
for s, g, d in zip(self.stripe_size, self.stripe_groups, input_resolution): |
|
if g is None: |
|
stripe_size.append(s) |
|
shift_size.append(s // 2 if self.stripe_shift else 0) |
|
else: |
|
stripe_size.append(d // g) |
|
shift_size.append(0 if g == 1 else d // (g * 2)) |
|
return stripe_size, shift_size |
|
|
|
|
|
class Attention(ABC, nn.Module): |
|
def __init__(self): |
|
super(Attention, self).__init__() |
|
|
|
def attn(self, q, k, v, attn_transform, x_size, reshape=True): |
|
|
|
B_, _, H, head_dim = q.shape |
|
if self.euclidean_dist: |
|
attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1) |
|
else: |
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
attn = attn_transform(attn, x_size) |
|
|
|
attn = self.softmax(attn) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
if reshape: |
|
x = x.transpose(1, 2).reshape(B_, -1, H * head_dim) |
|
|
|
return x |
|
|
|
|
|
class WindowAttention(Attention): |
|
r"""Window attention. QKV is the input to the forward method. |
|
Args: |
|
num_heads (int): Number of attention heads. |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_resolution, |
|
window_size, |
|
num_heads, |
|
window_shift=False, |
|
attn_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
args=None, |
|
): |
|
|
|
super(WindowAttention, self).__init__() |
|
self.input_resolution = input_resolution |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
self.shift_size = window_size[0] // 2 if window_shift else 0 |
|
self.euclidean_dist = args.euclidean_dist |
|
|
|
self.attn_transform = AffineTransformWindow( |
|
num_heads, |
|
input_resolution, |
|
window_size, |
|
pretrained_window_size, |
|
self.shift_size, |
|
args=args, |
|
) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, qkv, x_size): |
|
""" |
|
Args: |
|
qkv: input QKV features with shape of (B, L, 3C) |
|
x_size: use x_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
H, W = x_size |
|
B, L, C = qkv.shape |
|
qkv = qkv.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
qkv = torch.roll( |
|
qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
|
|
|
|
qkv = window_partition(qkv, self.window_size) |
|
qkv = qkv.view(-1, prod(self.window_size), C) |
|
|
|
B_, N, _ = qkv.shape |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
x = self.attn(q, k, v, self.attn_transform, x_size) |
|
|
|
|
|
x = x.view(-1, *self.window_size, C // 3) |
|
x = window_reverse(x, self.window_size, x_size) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
x = x.view(B, L, C // 3) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, " |
|
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" |
|
) |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class StripeAttention(Attention): |
|
r"""Stripe attention |
|
Args: |
|
stripe_size (tuple[int]): The height and width of the stripe. |
|
num_heads (int): Number of attention heads. |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads, |
|
attn_drop=0.0, |
|
pretrained_stripe_size=[0, 0], |
|
args=None, |
|
): |
|
|
|
super(StripeAttention, self).__init__() |
|
self.input_resolution = input_resolution |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.stripe_shift = stripe_shift |
|
self.num_heads = num_heads |
|
self.pretrained_stripe_size = pretrained_stripe_size |
|
self.euclidean_dist = args.euclidean_dist |
|
|
|
self.attn_transform = AffineTransformStripe( |
|
num_heads, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
pretrained_stripe_size, |
|
anchor_window_down_factor=1, |
|
args=args, |
|
) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, qkv, x_size): |
|
""" |
|
Args: |
|
x: input features with shape of (B, L, C) |
|
stripe_size: use stripe_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
H, W = x_size |
|
B, L, C = qkv.shape |
|
qkv = qkv.view(B, H, W, C) |
|
|
|
running_stripe_size, running_shift_size = self.attn_transform._get_stripe_info( |
|
x_size |
|
) |
|
|
|
if self.stripe_shift: |
|
qkv = torch.roll( |
|
qkv, |
|
shifts=(-running_shift_size[0], -running_shift_size[1]), |
|
dims=(1, 2), |
|
) |
|
|
|
|
|
qkv = window_partition(qkv, running_stripe_size) |
|
qkv = qkv.view(-1, prod(running_stripe_size), C) |
|
|
|
B_, N, _ = qkv.shape |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
x = self.attn(q, k, v, self.attn_transform, x_size) |
|
|
|
|
|
x = x.view(-1, *running_stripe_size, C // 3) |
|
x = window_reverse(x, running_stripe_size, x_size) |
|
|
|
|
|
if self.stripe_shift: |
|
x = torch.roll(x, shifts=running_shift_size, dims=(1, 2)) |
|
|
|
x = x.view(B, L, C // 3) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " |
|
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}" |
|
) |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class AnchorStripeAttention(Attention): |
|
r"""Stripe attention |
|
Args: |
|
stripe_size (tuple[int]): The height and width of the stripe. |
|
num_heads (int): Number of attention heads. |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads, |
|
attn_drop=0.0, |
|
pretrained_stripe_size=[0, 0], |
|
anchor_window_down_factor=1, |
|
args=None, |
|
): |
|
|
|
super(AnchorStripeAttention, self).__init__() |
|
self.input_resolution = input_resolution |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.stripe_shift = stripe_shift |
|
self.num_heads = num_heads |
|
self.pretrained_stripe_size = pretrained_stripe_size |
|
self.anchor_window_down_factor = anchor_window_down_factor |
|
self.euclidean_dist = args.euclidean_dist |
|
|
|
self.attn_transform1 = AffineTransformStripe( |
|
num_heads, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
pretrained_stripe_size, |
|
anchor_window_down_factor, |
|
window_to_anchor=False, |
|
args=args, |
|
) |
|
|
|
self.attn_transform2 = AffineTransformStripe( |
|
num_heads, |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
pretrained_stripe_size, |
|
anchor_window_down_factor, |
|
window_to_anchor=True, |
|
args=args, |
|
) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, qkv, anchor, x_size): |
|
""" |
|
Args: |
|
qkv: input features with shape of (B, L, C) |
|
anchor: |
|
x_size: use stripe_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
H, W = x_size |
|
B, L, C = qkv.shape |
|
qkv = qkv.view(B, H, W, C) |
|
|
|
stripe_size, shift_size = self.attn_transform1._get_stripe_info(x_size) |
|
anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size] |
|
anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size] |
|
|
|
if self.stripe_shift: |
|
qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) |
|
anchor = torch.roll( |
|
anchor, |
|
shifts=(-anchor_shift_size[0], -anchor_shift_size[1]), |
|
dims=(1, 2), |
|
) |
|
|
|
|
|
qkv = window_partition(qkv, stripe_size) |
|
qkv = qkv.view(-1, prod(stripe_size), C) |
|
anchor = window_partition(anchor, anchor_stripe_size) |
|
anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3) |
|
|
|
B_, N1, _ = qkv.shape |
|
N2 = anchor.shape[1] |
|
qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3) |
|
|
|
|
|
x = self.attn(anchor, k, v, self.attn_transform1, x_size, False) |
|
x = self.attn(q, anchor, x, self.attn_transform2, x_size) |
|
|
|
|
|
x = x.view(B_, *stripe_size, C // 3) |
|
x = window_reverse(x, stripe_size, x_size) |
|
|
|
|
|
if self.stripe_shift: |
|
x = torch.roll(x, shifts=shift_size, dims=(1, 2)) |
|
|
|
x = x.view(B, H * W, C // 3) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " |
|
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}" |
|
) |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class SeparableConv(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, kernel_size, stride, bias, args): |
|
m = [ |
|
nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size, |
|
stride, |
|
kernel_size // 2, |
|
groups=in_channels, |
|
bias=bias, |
|
) |
|
] |
|
if args.separable_conv_act: |
|
m.append(nn.GELU()) |
|
m.append(nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=bias)) |
|
super(SeparableConv, self).__init__(*m) |
|
|
|
|
|
class QKVProjection(nn.Module): |
|
def __init__(self, dim, qkv_bias, proj_type, args): |
|
super(QKVProjection, self).__init__() |
|
self.proj_type = proj_type |
|
if proj_type == "linear": |
|
self.body = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
else: |
|
self.body = SeparableConv(dim, dim * 3, 3, 1, qkv_bias, args) |
|
|
|
def forward(self, x, x_size): |
|
if self.proj_type == "separable_conv": |
|
x = blc_to_bchw(x, x_size) |
|
x = self.body(x) |
|
if self.proj_type == "separable_conv": |
|
x = bchw_to_blc(x) |
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
r"""Patch Merging Layer. |
|
Args: |
|
dim (int): Number of input channels. |
|
""" |
|
|
|
def __init__(self, in_dim, out_dim): |
|
super().__init__() |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
self.reduction = nn.Linear(4 * in_dim, out_dim, bias=False) |
|
|
|
def forward(self, x, x_size): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = x_size |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class AnchorLinear(nn.Module): |
|
r"""Linear anchor projection layer |
|
Args: |
|
dim (int): Number of input channels. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, down_factor, pooling_mode, bias): |
|
super().__init__() |
|
self.down_factor = down_factor |
|
if pooling_mode == "maxpool": |
|
self.pooling = nn.MaxPool2d(down_factor, down_factor) |
|
elif pooling_mode == "avgpool": |
|
self.pooling = nn.AvgPool2d(down_factor, down_factor) |
|
self.reduction = nn.Linear(in_channels, out_channels, bias=bias) |
|
|
|
def forward(self, x, x_size): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
x = blc_to_bchw(x, x_size) |
|
x = bchw_to_blc(self.pooling(x)) |
|
x = blc_to_bhwc(self.reduction(x), [s // self.down_factor for s in x_size]) |
|
return x |
|
|
|
|
|
class AnchorProjection(nn.Module): |
|
def __init__(self, dim, proj_type, one_stage, anchor_window_down_factor, args): |
|
super(AnchorProjection, self).__init__() |
|
self.proj_type = proj_type |
|
self.body = nn.ModuleList([]) |
|
if one_stage: |
|
if proj_type == "patchmerging": |
|
m = PatchMerging(dim, dim // 2) |
|
elif proj_type == "conv2d": |
|
kernel_size = anchor_window_down_factor + 1 |
|
stride = anchor_window_down_factor |
|
padding = kernel_size // 2 |
|
m = nn.Conv2d(dim, dim // 2, kernel_size, stride, padding) |
|
elif proj_type == "separable_conv": |
|
kernel_size = anchor_window_down_factor + 1 |
|
stride = anchor_window_down_factor |
|
m = SeparableConv(dim, dim // 2, kernel_size, stride, True, args) |
|
elif proj_type.find("pool") >= 0: |
|
m = AnchorLinear( |
|
dim, dim // 2, anchor_window_down_factor, proj_type, True |
|
) |
|
self.body.append(m) |
|
else: |
|
for i in range(int(math.log2(anchor_window_down_factor))): |
|
cin = dim if i == 0 else dim // 2 |
|
if proj_type == "patchmerging": |
|
m = PatchMerging(cin, dim // 2) |
|
elif proj_type == "conv2d": |
|
m = nn.Conv2d(cin, dim // 2, 3, 2, 1) |
|
elif proj_type == "separable_conv": |
|
m = SeparableConv(cin, dim // 2, 3, 2, True, args) |
|
self.body.append(m) |
|
|
|
def forward(self, x, x_size): |
|
if self.proj_type.find("conv") >= 0: |
|
x = blc_to_bchw(x, x_size) |
|
for m in self.body: |
|
x = m(x) |
|
x = bchw_to_bhwc(x) |
|
elif self.proj_type.find("pool") >= 0: |
|
for m in self.body: |
|
x = m(x, x_size) |
|
else: |
|
for i, m in enumerate(self.body): |
|
x = m(x, [s // 2**i for s in x_size]) |
|
x = blc_to_bhwc(x, [s // 2 ** (i + 1) for s in x_size]) |
|
return x |
|
|
|
|
|
class MixedAttention(nn.Module): |
|
r"""Mixed window attention and stripe attention |
|
Args: |
|
dim (int): Number of input channels. |
|
stripe_size (tuple[int]): The height and width of the stripe. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size, |
|
window_shift, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
qkv_bias=True, |
|
qkv_proj_type="linear", |
|
anchor_proj_type="separable_conv", |
|
anchor_one_stage=True, |
|
anchor_window_down_factor=1, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
pretrained_stripe_size=[0, 0], |
|
args=None, |
|
): |
|
|
|
super(MixedAttention, self).__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.use_anchor = anchor_window_down_factor > 1 |
|
self.args = args |
|
|
|
self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args) |
|
if self.use_anchor: |
|
|
|
self.anchor = AnchorProjection( |
|
dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args |
|
) |
|
|
|
self.window_attn = WindowAttention( |
|
input_resolution, |
|
window_size, |
|
num_heads_w, |
|
window_shift, |
|
attn_drop, |
|
pretrained_window_size, |
|
args, |
|
) |
|
|
|
if self.args.double_window: |
|
self.stripe_attn = WindowAttention( |
|
input_resolution, |
|
window_size, |
|
num_heads_w, |
|
window_shift, |
|
attn_drop, |
|
pretrained_window_size, |
|
args, |
|
) |
|
else: |
|
if self.use_anchor: |
|
self.stripe_attn = AnchorStripeAttention( |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads_s, |
|
attn_drop, |
|
pretrained_stripe_size, |
|
anchor_window_down_factor, |
|
args, |
|
) |
|
else: |
|
if self.args.stripe_square: |
|
self.stripe_attn = StripeAttention( |
|
input_resolution, |
|
window_size, |
|
[None, None], |
|
window_shift, |
|
num_heads_s, |
|
attn_drop, |
|
pretrained_stripe_size, |
|
args, |
|
) |
|
else: |
|
self.stripe_attn = StripeAttention( |
|
input_resolution, |
|
stripe_size, |
|
stripe_groups, |
|
stripe_shift, |
|
num_heads_s, |
|
attn_drop, |
|
pretrained_stripe_size, |
|
args, |
|
) |
|
if self.args.out_proj_type == "linear": |
|
self.proj = nn.Linear(dim, dim) |
|
else: |
|
self.proj = nn.Conv2d(dim, dim, 3, 1, 1) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, x_size): |
|
""" |
|
Args: |
|
x: input features with shape of (B, L, C) |
|
stripe_size: use stripe_size to determine whether the relative positional bias table and index |
|
need to be regenerated. |
|
""" |
|
B, L, C = x.shape |
|
|
|
|
|
qkv = self.qkv(x, x_size) |
|
qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1) |
|
|
|
if self.use_anchor: |
|
anchor = self.anchor(x, x_size) |
|
|
|
|
|
x_window = self.window_attn(qkv_window, x_size) |
|
if self.use_anchor: |
|
x_stripe = self.stripe_attn(qkv_stripe, anchor, x_size) |
|
else: |
|
x_stripe = self.stripe_attn(qkv_stripe, x_size) |
|
x = torch.cat([x_window, x_stripe], dim=-1) |
|
|
|
|
|
if self.args.out_proj_type == "linear": |
|
x = self.proj(x) |
|
else: |
|
x = blc_to_bchw(x, x_size) |
|
x = bchw_to_blc(self.proj(x)) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}" |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
"""Channel attention used in RCAN. |
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
reduction (int): Channel reduction factor. Default: 16. |
|
""" |
|
|
|
def __init__(self, num_feat, reduction=16): |
|
super(ChannelAttention, self).__init__() |
|
self.attention = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(num_feat, num_feat // reduction, 1, padding=0), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(num_feat // reduction, num_feat, 1, padding=0), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
y = self.attention(x) |
|
return x * y |
|
|
|
|
|
class CAB(nn.Module): |
|
def __init__(self, num_feat, compress_ratio=4, reduction=18): |
|
super(CAB, self).__init__() |
|
|
|
self.cab = nn.Sequential( |
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), |
|
nn.GELU(), |
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), |
|
ChannelAttention(num_feat, reduction), |
|
) |
|
|
|
def forward(self, x, x_size): |
|
x = self.cab(blc_to_bchw(x, x_size).contiguous()) |
|
return bchw_to_blc(x) |
|
|
|
|
|
class MixAttnTransformerBlock(nn.Module): |
|
r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_stripe_size (int): Window size in pre-training. |
|
attn_type (str, optional): Attention type. Default: cwhv. |
|
c: residual blocks |
|
w: window attention |
|
h: horizontal stripe attention |
|
v: vertical stripe attention |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size=7, |
|
window_shift=False, |
|
stripe_size=[8, 8], |
|
stripe_groups=[None, None], |
|
stripe_shift=False, |
|
stripe_type="H", |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qkv_proj_type="linear", |
|
anchor_proj_type="separable_conv", |
|
anchor_one_stage=True, |
|
anchor_window_down_factor=1, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
pretrained_window_size=[0, 0], |
|
pretrained_stripe_size=[0, 0], |
|
res_scale=1.0, |
|
args=None, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads_w = num_heads_w |
|
self.num_heads_s = num_heads_s |
|
self.window_size = window_size |
|
self.window_shift = window_shift |
|
self.stripe_shift = stripe_shift |
|
self.stripe_type = stripe_type |
|
self.args = args |
|
if self.stripe_type == "W": |
|
self.stripe_size = stripe_size[::-1] |
|
self.stripe_groups = stripe_groups[::-1] |
|
else: |
|
self.stripe_size = stripe_size |
|
self.stripe_groups = stripe_groups |
|
self.mlp_ratio = mlp_ratio |
|
self.res_scale = res_scale |
|
|
|
self.attn = MixedAttention( |
|
dim, |
|
input_resolution, |
|
num_heads_w, |
|
num_heads_s, |
|
window_size, |
|
window_shift, |
|
self.stripe_size, |
|
self.stripe_groups, |
|
stripe_shift, |
|
qkv_bias, |
|
qkv_proj_type, |
|
anchor_proj_type, |
|
anchor_one_stage, |
|
anchor_window_down_factor, |
|
attn_drop, |
|
drop, |
|
pretrained_window_size, |
|
pretrained_stripe_size, |
|
args, |
|
) |
|
self.norm1 = norm_layer(dim) |
|
if self.args.local_connection: |
|
self.conv = CAB(dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, x_size): |
|
|
|
if self.args.local_connection: |
|
x = ( |
|
x |
|
+ self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) |
|
+ self.conv(x, x_size) |
|
) |
|
else: |
|
x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) |
|
|
|
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) |
|
|
|
|
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), " |
|
f"window_size={self.window_size}, window_shift={self.window_shift}, " |
|
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, " |
|
f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|