change input types to strings
Browse files- logscoremetric.py +4 -2
logscoremetric.py
CHANGED
@@ -70,9 +70,10 @@ class LogScoreMetric(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
|
|
73 |
features=datasets.Features({
|
74 |
-
'predictions': datasets.Value('
|
75 |
-
'references': datasets.Value('
|
76 |
}),
|
77 |
# Homepage of the module for documentation
|
78 |
homepage="http://module.homepage",
|
@@ -91,5 +92,6 @@ class LogScoreMetric(evaluate.Metric):
|
|
91 |
# TODO: Compute the different scores of the module
|
92 |
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
93 |
return {
|
|
|
94 |
"accuracy": accuracy,
|
95 |
}
|
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
+
# Both prediction and reference are strings
|
74 |
features=datasets.Features({
|
75 |
+
'predictions': datasets.Value('string'),
|
76 |
+
'references': datasets.Value('string'),
|
77 |
}),
|
78 |
# Homepage of the module for documentation
|
79 |
homepage="http://module.homepage",
|
|
|
92 |
# TODO: Compute the different scores of the module
|
93 |
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
94 |
return {
|
95 |
+
"timestamp_score": accuracy,
|
96 |
"accuracy": accuracy,
|
97 |
}
|