Sujal Bhat commited on
Commit
3ae573f
·
1 Parent(s): 7a0315d

Remove fine_tuned_embedding_model from Git tracking

Browse files
fine_tuned_embedding_model/1_Pooling/config.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "word_embedding_dimension": 384,
3
- "pooling_mode_cls_token": false,
4
- "pooling_mode_mean_tokens": true,
5
- "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false,
9
- "include_prompt": true
10
- }
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/README.md DELETED
@@ -1,520 +0,0 @@
1
- ---
2
- base_model: sentence-transformers/all-MiniLM-L6-v2
3
- library_name: sentence-transformers
4
- pipeline_tag: sentence-similarity
5
- tags:
6
- - sentence-transformers
7
- - sentence-similarity
8
- - feature-extraction
9
- - generated_from_trainer
10
- - dataset_size:555
11
- - loss:MultipleNegativesRankingLoss
12
- widget:
13
- - source_sentence: What does this text say about unclassified?
14
- sentences:
15
- - "these sources. \nErrors in third-party GAI components can also have downstream\
16
- \ impacts on accuracy and robustness. \nFor example, test datasets commonly used\
17
- \ to benchmark or validate models can contain label errors. \nInaccuracies in\
18
- \ these labels can impact the “stability” or robustness of these benchmarks, which\
19
- \ many \nGAI practitioners consider during the model selection process. \nTrustworthy\
20
- \ AI Characteristics: Accountable and Transparent, Explainable and Interpretable,\
21
- \ Fair with \nHarmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient,\
22
- \ Valid and Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following\
23
- \ suggested actions target risks unique to or exacerbated by GAI. \nIn addition\
24
- \ to the suggested actions below, AI risk management activities and actions set\
25
- \ forth in the AI \nRMF 1.0 and Playbook are already applicable for managing GAI\
26
- \ risks. Organizations are encouraged to"
27
- - "and hardware vulnerabilities; labor practices; data privacy and localization\
28
- \ \ncompliance; geopolitical alignment). \nData Privacy; Information Security;\
29
- \ \nValue Chain and Component \nIntegration; Harmful Bias and \nHomogenization\
30
- \ \nMG-3.1-003 \nRe-assess model risks after fine-tuning or retrieval-augmented\
31
- \ generation \nimplementation and for any third-party GAI models deployed for\
32
- \ applications \nand/or use cases that were not evaluated in initial testing.\
33
- \ \nValue Chain and Component \nIntegration \nMG-3.1-004 \nTake reasonable measures\
34
- \ to review training data for CBRN information, and \nintellectual property, and\
35
- \ where appropriate, remove it. Implement reasonable \nmeasures to prevent, flag,\
36
- \ or take other action in response to outputs that \nreproduce particular training\
37
- \ data (e.g., plagiarized, trademarked, patented, \nlicensed content or trade\
38
- \ secret material). \nIntellectual Property; CBRN \nInformation or Capabilities\
39
- \ \n \n43"
40
- - "• \nStage of the AI lifecycle: Risks can arise during design, development, deployment,\
41
- \ operation, \nand/or decommissioning. \n• \nScope: Risks may exist at individual\
42
- \ model or system levels, at the application or implementation \nlevels (i.e.,\
43
- \ for a specific use case), or at the ecosystem level – that is, beyond a single\
44
- \ system or \norganizational context. Examples of the latter include the expansion\
45
- \ of “algorithmic \nmonocultures,3” resulting from repeated use of the same model,\
46
- \ or impacts on access to \nopportunity, labor markets, and the creative economies.4\
47
- \ \n• \nSource of risk: Risks may emerge from factors related to the design, training,\
48
- \ or operation of the \nGAI model itself, stemming in some cases from GAI model\
49
- \ or system inputs, and in other cases, \nfrom GAI system outputs. Many GAI risks,\
50
- \ however, originate from human behavior, including \n \n \n3 “Algorithmic monocultures”\
51
- \ refers to the phenomenon in which repeated use of the same model or algorithm\
52
- \ in"
53
- - source_sentence: What does this text say about unclassified?
54
- sentences:
55
- - "Security; Dangerous, Violent, or \nHateful Content \n \n34 \nMS-2.7-009 Regularly\
56
- \ assess and verify that security measures remain effective and have not \nbeen\
57
- \ compromised. \nInformation Security \nAI Actor Tasks: AI Deployment, AI Impact\
58
- \ Assessment, Domain Experts, Operation and Monitoring, TEVV \n \nMEASURE 2.8:\
59
- \ Risks associated with transparency and accountability – as identified in the\
60
- \ MAP function – are examined and \ndocumented. \nAction ID \nSuggested Action\
61
- \ \nGAI Risks \nMS-2.8-001 \nCompile statistics on actual policy violations, take-down\
62
- \ requests, and intellectual \nproperty infringement for organizational GAI systems:\
63
- \ Analyze transparency \nreports across demographic groups, languages groups.\
64
- \ \nIntellectual Property; Harmful Bias \nand Homogenization \nMS-2.8-002 Document\
65
- \ the instructions given to data annotators or AI red-teamers. \nHuman-AI Configuration\
66
- \ \nMS-2.8-003 \nUse digital content transparency solutions to enable the documentation\
67
- \ of each"
68
- - "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
69
- \ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
70
- \ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
71
- \ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
72
- \ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
73
- \ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
74
- \ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
75
- \ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
76
- \ features of fine-tuned models when the negative risk exceeds \norganizational\
77
- \ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
78
- \ GAI system outputs for validity and safety: Review generated code to \nassess\
79
- \ risks that may arise from unreliable downstream decision-making. \nValue Chain\
80
- \ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
81
- - "Information Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI\
82
- \ Deployment, AI Impact Assessment, Domain Experts, End-Users, Operation and Monitoring,\
83
- \ TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the\
84
- \ MAP function – is examined and documented. \nAction ID \nSuggested Action \n\
85
- GAI Risks \nMS-2.10-001 \nConduct AI red-teaming to assess issues such as: Outputting\
86
- \ of training data \nsamples, and subsequent reverse engineering, model extraction,\
87
- \ and \nmembership inference risks; Revealing biometric, confidential, copyrighted,\
88
- \ \nlicensed, patented, personal, proprietary, sensitive, or trade-marked information;\
89
- \ \nTracking or revealing location information of users or members of training\
90
- \ \ndatasets. \nHuman-AI Configuration; \nInformation Integrity; Intellectual \n\
91
- Property \nMS-2.10-002 \nEngage directly with end-users and other stakeholders\
92
- \ to understand their \nexpectations and concerns regarding content provenance.\
93
- \ Use this feedback to"
94
- - source_sentence: What does this text say about risk management?
95
- sentences:
96
- - "robust watermarking techniques and corresponding detectors to identify the source\
97
- \ of content or \nmetadata recording techniques and metadata management tools\
98
- \ and repositories to trace content \norigins and modifications. Further narrowing\
99
- \ of GAI task definitions to include provenance data can \nenable organizations\
100
- \ to maximize the utility of provenance data and risk management efforts. \nA.1.7.\
101
- \ Enhancing Content Provenance through Structured Public Feedback \nWhile indirect\
102
- \ feedback methods such as automated error collection systems are useful, they\
103
- \ often lack \nthe context and depth that direct input from end users can provide.\
104
- \ Organizations can leverage feedback \napproaches described in the Pre-Deployment\
105
- \ Testing section to capture input from external sources such \nas through AI\
106
- \ red-teaming. \nIntegrating pre- and post-deployment external feedback into\
107
- \ the monitoring process for GAI models and"
108
- - "tools for monitoring third-party GAI risks; Consider policy adjustments across\
109
- \ GAI \nmodeling libraries, tools and APIs, fine-tuned models, and embedded tools;\
110
- \ \nAssess GAI vendors, open-source or proprietary GAI tools, or GAI service \n\
111
- providers against incident or vulnerability databases. \nData Privacy; Human-AI\
112
- \ \nConfiguration; Information \nSecurity; Intellectual Property; \nValue Chain\
113
- \ and Component \nIntegration; Harmful Bias and \nHomogenization \nGV-6.1-010\
114
- \ \nUpdate GAI acceptable use policies to address proprietary and open-source\
115
- \ GAI \ntechnologies and data, and contractors, consultants, and other third-party\
116
- \ \npersonnel. \nIntellectual Property; Value Chain \nand Component Integration\
117
- \ \nAI Actor Tasks: Operation and Monitoring, Procurement, Third-party entities\
118
- \ \n \nGOVERN 6.2: Contingency processes are in place to handle failures or incidents\
119
- \ in third-party data or AI systems deemed to be \nhigh-risk. \nAction ID \nSuggested\
120
- \ Action \nGAI Risks \nGV-6.2-001"
121
- - "MEASURE 2.3: AI system performance or assurance criteria are measured qualitatively\
122
- \ or quantitatively and demonstrated for \nconditions similar to deployment setting(s).\
123
- \ Measures are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-2.3-001\
124
- \ Consider baseline model performance on suites of benchmarks when selecting a\
125
- \ \nmodel for fine tuning or enhancement with retrieval-augmented generation. \n\
126
- Information Security; \nConfabulation \nMS-2.3-002 Evaluate claims of model capabilities\
127
- \ using empirically validated methods. \nConfabulation; Information \nSecurity\
128
- \ \nMS-2.3-003 Share results of pre-deployment testing with relevant GAI Actors,\
129
- \ such as those \nwith system release approval authority. \nHuman-AI Configuration\
130
- \ \n \n31 \nMS-2.3-004 \nUtilize a purpose-built testing environment such as NIST\
131
- \ Dioptra to empirically \nevaluate GAI trustworthy characteristics. \nCBRN Information\
132
- \ or Capabilities; \nData Privacy; Confabulation; \nInformation Integrity; Information\
133
- \ \nSecurity; Dangerous, Violent, or"
134
- - source_sentence: What does this text say about unclassified?
135
- sentences:
136
- - "techniques such as re-sampling, re-ranking, or adversarial training to mitigate\
137
- \ \nbiases in the generated content. \nInformation Security; Harmful Bias \nand\
138
- \ Homogenization \nMG-2.2-005 \nEngage in due diligence to analyze GAI output\
139
- \ for harmful content, potential \nmisinformation, and CBRN-related or NCII content.\
140
- \ \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content;\
141
- \ Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content\
142
- \ \n \n41 \nMG-2.2-006 \nUse feedback from internal and external AI Actors, users,\
143
- \ individuals, and \ncommunities, to assess impact of AI-generated content. \n\
144
- Human-AI Configuration \nMG-2.2-007 \nUse real-time auditing tools where they can\
145
- \ be demonstrated to aid in the \ntracking and validation of the lineage and authenticity\
146
- \ of AI-generated data. \nInformation Integrity \nMG-2.2-008 \nUse structured\
147
- \ feedback mechanisms to solicit and capture user input about AI-\ngenerated content\
148
- \ to detect subtle shifts in quality or alignment with"
149
- - "Human-AI Configuration; Value \nChain and Component Integration \nMP-5.2-002 \n\
150
- Plan regular engagements with AI Actors responsible for inputs to GAI systems,\
151
- \ \nincluding third-party data and algorithms, to review and evaluate unanticipated\
152
- \ \nimpacts. \nHuman-AI Configuration; Value \nChain and Component Integration\
153
- \ \nAI Actor Tasks: AI Deployment, AI Design, AI Impact Assessment, Affected Individuals\
154
- \ and Communities, Domain Experts, End-\nUsers, Human Factors, Operation and Monitoring\
155
- \ \n \nMEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated\
156
- \ during the MAP function are selected for \nimplementation starting with the\
157
- \ most significant AI risks. The risks or trustworthiness characteristics that\
158
- \ will not – or cannot – be \nmeasured are properly documented. \nAction ID \n\
159
- Suggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and\
160
- \ modifications of digital content. \nInformation Integrity \nMS-1.1-002"
161
- - "input them directly to a GAI system, with a variety of downstream negative consequences\
162
- \ to \ninterconnected systems. Indirect prompt injection attacks occur when adversaries\
163
- \ remotely (i.e., without \na direct interface) exploit LLM-integrated applications\
164
- \ by injecting prompts into data likely to be \nretrieved. Security researchers\
165
- \ have already demonstrated how indirect prompt injections can exploit \nvulnerabilities\
166
- \ by stealing proprietary data or running malicious code remotely on a machine.\
167
- \ Merely \nquerying a closed production model can elicit previously undisclosed\
168
- \ information about that model. \nAnother cybersecurity risk to GAI is data poisoning,\
169
- \ in which an adversary compromises a training \ndataset used by a model to manipulate\
170
- \ its outputs or operation. Malicious tampering with data or parts \nof the model\
171
- \ could exacerbate risks associated with GAI system outputs. \nTrustworthy AI\
172
- \ Characteristics: Privacy Enhanced, Safe, Secure and Resilient, Valid and Reliable\
173
- \ \n2.10."
174
- - source_sentence: What does this text say about data privacy?
175
- sentences:
176
- - "Property. We also note that some risks are cross-cutting between these categories.\
177
- \ \n \n4 \n1. CBRN Information or Capabilities: Eased access to or synthesis\
178
- \ of materially nefarious \ninformation or design capabilities related to chemical,\
179
- \ biological, radiological, or nuclear (CBRN) \nweapons or other dangerous materials\
180
- \ or agents. \n2. Confabulation: The production of confidently stated but erroneous\
181
- \ or false content (known \ncolloquially as “hallucinations” or “fabrications”)\
182
- \ by which users may be misled or deceived.6 \n3. Dangerous, Violent, or Hateful\
183
- \ Content: Eased production of and access to violent, inciting, \nradicalizing,\
184
- \ or threatening content as well as recommendations to carry out self-harm or\
185
- \ \nconduct illegal activities. Includes difficulty controlling public exposure\
186
- \ to hateful and disparaging \nor stereotyping content. \n4. Data Privacy: Impacts\
187
- \ due to leakage and unauthorized use, disclosure, or de-anonymization of"
188
- - "information during GAI training and maintenance. \nHuman-AI Configuration; Obscene,\
189
- \ \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration;\
190
- \ \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or\
191
- \ levels of harmful bias, intellectual property infringement, \ndata privacy violations,\
192
- \ obscenity, extremism, violence, or CBRN information in \nsystem training data.\
193
- \ \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive\
194
- \ Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful\
195
- \ Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety\
196
- \ features of fine-tuned models when the negative risk exceeds \norganizational\
197
- \ risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review\
198
- \ GAI system outputs for validity and safety: Review generated code to \nassess\
199
- \ risks that may arise from unreliable downstream decision-making. \nValue Chain\
200
- \ and Component \nIntegration; Dangerous, Violent, or \nHateful Content"
201
- - "Scheurer, J. et al. (2023) Technical report: Large language models can strategically\
202
- \ deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590\
203
- \ \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping\
204
- \ a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \n\
205
- Shevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324\
206
- \ \nShumailov, I. et al. (2023) The curse of recursion: training on generated\
207
- \ data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith,\
208
- \ A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in\
209
- \ Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388\
210
- \ \nSoice, E. et al. (2023) Can large language models democratize access to dual-use\
211
- \ biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809"
212
- ---
213
-
214
- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
215
-
216
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
217
-
218
- ## Model Details
219
-
220
- ### Model Description
221
- - **Model Type:** Sentence Transformer
222
- - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
223
- - **Maximum Sequence Length:** 256 tokens
224
- - **Output Dimensionality:** 384 tokens
225
- - **Similarity Function:** Cosine Similarity
226
- <!-- - **Training Dataset:** Unknown -->
227
- <!-- - **Language:** Unknown -->
228
- <!-- - **License:** Unknown -->
229
-
230
- ### Model Sources
231
-
232
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
233
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
234
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
235
-
236
- ### Full Model Architecture
237
-
238
- ```
239
- SentenceTransformer(
240
- (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
241
- (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
242
- (2): Normalize()
243
- )
244
- ```
245
-
246
- ## Usage
247
-
248
- ### Direct Usage (Sentence Transformers)
249
-
250
- First install the Sentence Transformers library:
251
-
252
- ```bash
253
- pip install -U sentence-transformers
254
- ```
255
-
256
- Then you can load this model and run inference.
257
- ```python
258
- from sentence_transformers import SentenceTransformer
259
-
260
- # Download from the 🤗 Hub
261
- model = SentenceTransformer("sentence_transformers_model_id")
262
- # Run inference
263
- sentences = [
264
- 'What does this text say about data privacy?',
265
- 'information during GAI training and maintenance. \nHuman-AI Configuration; Obscene, \nDegrading, and/or Abusive \nContent; Value Chain and \nComponent Integration; \nDangerous, Violent, or Hateful \nContent \nMS-2.6-002 \nAssess existence or levels of harmful bias, intellectual property infringement, \ndata privacy violations, obscenity, extremism, violence, or CBRN information in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003 Re-evaluate safety features of fine-tuned models when the negative risk exceeds \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent \nMS-2.6-004 Review GAI system outputs for validity and safety: Review generated code to \nassess risks that may arise from unreliable downstream decision-making. \nValue Chain and Component \nIntegration; Dangerous, Violent, or \nHateful Content',
266
- 'Scheurer, J. et al. (2023) Technical report: Large language models can strategically deceive their users \nwhen put under pressure. arXiv. https://arxiv.org/abs/2311.07590 \nShelby, R. et al. (2023) Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm \nReduction. arXiv. https://arxiv.org/pdf/2210.05791 \nShevlane, T. et al. (2023) Model evaluation for extreme risks. arXiv. https://arxiv.org/pdf/2305.15324 \nShumailov, I. et al. (2023) The curse of recursion: training on generated data makes models forget. arXiv. \nhttps://arxiv.org/pdf/2305.17493v2 \nSmith, A. et al. (2023) Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language \nModels. PLOS Digital Health. \nhttps://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000388 \nSoice, E. et al. (2023) Can large language models democratize access to dual-use biotechnology? arXiv. \nhttps://arxiv.org/abs/2306.03809',
267
- ]
268
- embeddings = model.encode(sentences)
269
- print(embeddings.shape)
270
- # [3, 384]
271
-
272
- # Get the similarity scores for the embeddings
273
- similarities = model.similarity(embeddings, embeddings)
274
- print(similarities.shape)
275
- # [3, 3]
276
- ```
277
-
278
- <!--
279
- ### Direct Usage (Transformers)
280
-
281
- <details><summary>Click to see the direct usage in Transformers</summary>
282
-
283
- </details>
284
- -->
285
-
286
- <!--
287
- ### Downstream Usage (Sentence Transformers)
288
-
289
- You can finetune this model on your own dataset.
290
-
291
- <details><summary>Click to expand</summary>
292
-
293
- </details>
294
- -->
295
-
296
- <!--
297
- ### Out-of-Scope Use
298
-
299
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
300
- -->
301
-
302
- <!--
303
- ## Bias, Risks and Limitations
304
-
305
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
306
- -->
307
-
308
- <!--
309
- ### Recommendations
310
-
311
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
312
- -->
313
-
314
- ## Training Details
315
-
316
- ### Training Dataset
317
-
318
- #### Unnamed Dataset
319
-
320
-
321
- * Size: 555 training samples
322
- * Columns: <code>sentence_0</code> and <code>sentence_1</code>
323
- * Approximate statistics based on the first 555 samples:
324
- | | sentence_0 | sentence_1 |
325
- |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
326
- | type | string | string |
327
- | details | <ul><li>min: 10 tokens</li><li>mean: 11.2 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 156 tokens</li><li>mean: 199.37 tokens</li><li>max: 256 tokens</li></ul> |
328
- * Samples:
329
- | sentence_0 | sentence_1 |
330
- |:------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
331
- | <code>What does this text say about trustworthiness?</code> | <code>other systems. <br>Information Integrity; Value Chain <br>and Component Integration <br>MP-2.2-002 <br>Observe and analyze how the GAI system interacts with external networks, and <br>identify any potential for negative externalities, particularly where content <br>provenance might be compromised. <br>Information Integrity <br>AI Actor Tasks: End Users <br> <br>MAP 2.3: Scientific integrity and TEVV considerations are identified and documented, including those related to experimental <br>design, data collection and selection (e.g., availability, representativeness, suitability), system trustworthiness, and construct <br>validation <br>Action ID <br>Suggested Action <br>GAI Risks <br>MP-2.3-001 <br>Assess the accuracy, quality, reliability, and authenticity of GAI output by <br>comparing it to a set of known ground truth data and by using a variety of <br>evaluation methods (e.g., human oversight and automated evaluation, proven <br>cryptographic techniques, review of content inputs). <br>Information Integrity <br> <br>25</code> |
332
- | <code>What does this text say about unclassified?</code> | <code>training and TEVV data; Filtering of hate speech or content in GAI system <br>training data; Prevalence of GAI-generated data in GAI system training data. <br>Harmful Bias and Homogenization <br> <br> <br>15 Winogender Schemas is a sample set of paired sentences which differ only by gender of the pronouns used, <br>which can be used to evaluate gender bias in natural language processing coreference resolution systems. <br> <br>37 <br>MS-2.11-005 <br>Assess the proportion of synthetic to non-synthetic training data and verify <br>training data is not overly homogenous or GAI-produced to mitigate concerns of <br>model collapse. <br>Harmful Bias and Homogenization <br>AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and Communities, Domain Experts, End-Users, <br>Operation and Monitoring, TEVV <br> <br>MEASURE 2.12: Environmental impact and sustainability of AI model training and management activities – as identified in the MAP <br>function – are assessed and documented. <br>Action ID <br>Suggested Action <br>GAI Risks</code> |
333
- | <code>What does this text say about unclassified?</code> | <code>Padmakumar, V. et al. (2024) Does writing with language models reduce content diversity? ICLR. <br>https://arxiv.org/pdf/2309.05196 <br>Park, P. et. al. (2024) AI deception: A survey of examples, risks, and potential solutions. Patterns, 5(5). <br>arXiv. https://arxiv.org/pdf/2308.14752 <br>Partnership on AI (2023) Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect <br>Disclosure. https://partnershiponai.org/glossary-for-synthetic-media-transparency-methods-part-1-<br>indirect-disclosure/ <br>Qu, Y. et al. (2023) Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-<br>To-Image Models. arXiv. https://arxiv.org/pdf/2305.13873 <br>Rafat, K. et al. (2023) Mitigating carbon footprint for knowledge distillation based deep learning model <br>compression. PLOS One. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285668 <br>Said, I. et al. (2022) Nonconsensual Distribution of Intimate Images: Exploring the Role of Legal Attitudes</code> |
334
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
335
- ```json
336
- {
337
- "scale": 20.0,
338
- "similarity_fct": "cos_sim"
339
- }
340
- ```
341
-
342
- ### Training Hyperparameters
343
- #### Non-Default Hyperparameters
344
-
345
- - `per_device_train_batch_size`: 16
346
- - `per_device_eval_batch_size`: 16
347
- - `multi_dataset_batch_sampler`: round_robin
348
-
349
- #### All Hyperparameters
350
- <details><summary>Click to expand</summary>
351
-
352
- - `overwrite_output_dir`: False
353
- - `do_predict`: False
354
- - `eval_strategy`: no
355
- - `prediction_loss_only`: True
356
- - `per_device_train_batch_size`: 16
357
- - `per_device_eval_batch_size`: 16
358
- - `per_gpu_train_batch_size`: None
359
- - `per_gpu_eval_batch_size`: None
360
- - `gradient_accumulation_steps`: 1
361
- - `eval_accumulation_steps`: None
362
- - `torch_empty_cache_steps`: None
363
- - `learning_rate`: 5e-05
364
- - `weight_decay`: 0.0
365
- - `adam_beta1`: 0.9
366
- - `adam_beta2`: 0.999
367
- - `adam_epsilon`: 1e-08
368
- - `max_grad_norm`: 1
369
- - `num_train_epochs`: 3
370
- - `max_steps`: -1
371
- - `lr_scheduler_type`: linear
372
- - `lr_scheduler_kwargs`: {}
373
- - `warmup_ratio`: 0.0
374
- - `warmup_steps`: 0
375
- - `log_level`: passive
376
- - `log_level_replica`: warning
377
- - `log_on_each_node`: True
378
- - `logging_nan_inf_filter`: True
379
- - `save_safetensors`: True
380
- - `save_on_each_node`: False
381
- - `save_only_model`: False
382
- - `restore_callback_states_from_checkpoint`: False
383
- - `no_cuda`: False
384
- - `use_cpu`: False
385
- - `use_mps_device`: False
386
- - `seed`: 42
387
- - `data_seed`: None
388
- - `jit_mode_eval`: False
389
- - `use_ipex`: False
390
- - `bf16`: False
391
- - `fp16`: False
392
- - `fp16_opt_level`: O1
393
- - `half_precision_backend`: auto
394
- - `bf16_full_eval`: False
395
- - `fp16_full_eval`: False
396
- - `tf32`: None
397
- - `local_rank`: 0
398
- - `ddp_backend`: None
399
- - `tpu_num_cores`: None
400
- - `tpu_metrics_debug`: False
401
- - `debug`: []
402
- - `dataloader_drop_last`: False
403
- - `dataloader_num_workers`: 0
404
- - `dataloader_prefetch_factor`: None
405
- - `past_index`: -1
406
- - `disable_tqdm`: False
407
- - `remove_unused_columns`: True
408
- - `label_names`: None
409
- - `load_best_model_at_end`: False
410
- - `ignore_data_skip`: False
411
- - `fsdp`: []
412
- - `fsdp_min_num_params`: 0
413
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
414
- - `fsdp_transformer_layer_cls_to_wrap`: None
415
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
416
- - `deepspeed`: None
417
- - `label_smoothing_factor`: 0.0
418
- - `optim`: adamw_torch
419
- - `optim_args`: None
420
- - `adafactor`: False
421
- - `group_by_length`: False
422
- - `length_column_name`: length
423
- - `ddp_find_unused_parameters`: None
424
- - `ddp_bucket_cap_mb`: None
425
- - `ddp_broadcast_buffers`: False
426
- - `dataloader_pin_memory`: True
427
- - `dataloader_persistent_workers`: False
428
- - `skip_memory_metrics`: True
429
- - `use_legacy_prediction_loop`: False
430
- - `push_to_hub`: False
431
- - `resume_from_checkpoint`: None
432
- - `hub_model_id`: None
433
- - `hub_strategy`: every_save
434
- - `hub_private_repo`: False
435
- - `hub_always_push`: False
436
- - `gradient_checkpointing`: False
437
- - `gradient_checkpointing_kwargs`: None
438
- - `include_inputs_for_metrics`: False
439
- - `eval_do_concat_batches`: True
440
- - `fp16_backend`: auto
441
- - `push_to_hub_model_id`: None
442
- - `push_to_hub_organization`: None
443
- - `mp_parameters`:
444
- - `auto_find_batch_size`: False
445
- - `full_determinism`: False
446
- - `torchdynamo`: None
447
- - `ray_scope`: last
448
- - `ddp_timeout`: 1800
449
- - `torch_compile`: False
450
- - `torch_compile_backend`: None
451
- - `torch_compile_mode`: None
452
- - `dispatch_batches`: None
453
- - `split_batches`: None
454
- - `include_tokens_per_second`: False
455
- - `include_num_input_tokens_seen`: False
456
- - `neftune_noise_alpha`: None
457
- - `optim_target_modules`: None
458
- - `batch_eval_metrics`: False
459
- - `eval_on_start`: False
460
- - `eval_use_gather_object`: False
461
- - `batch_sampler`: batch_sampler
462
- - `multi_dataset_batch_sampler`: round_robin
463
-
464
- </details>
465
-
466
- ### Framework Versions
467
- - Python: 3.11.5
468
- - Sentence Transformers: 3.1.1
469
- - Transformers: 4.44.2
470
- - PyTorch: 2.4.1+cpu
471
- - Accelerate: 0.34.2
472
- - Datasets: 3.0.0
473
- - Tokenizers: 0.19.1
474
-
475
- ## Citation
476
-
477
- ### BibTeX
478
-
479
- #### Sentence Transformers
480
- ```bibtex
481
- @inproceedings{reimers-2019-sentence-bert,
482
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
483
- author = "Reimers, Nils and Gurevych, Iryna",
484
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
485
- month = "11",
486
- year = "2019",
487
- publisher = "Association for Computational Linguistics",
488
- url = "https://arxiv.org/abs/1908.10084",
489
- }
490
- ```
491
-
492
- #### MultipleNegativesRankingLoss
493
- ```bibtex
494
- @misc{henderson2017efficient,
495
- title={Efficient Natural Language Response Suggestion for Smart Reply},
496
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
497
- year={2017},
498
- eprint={1705.00652},
499
- archivePrefix={arXiv},
500
- primaryClass={cs.CL}
501
- }
502
- ```
503
-
504
- <!--
505
- ## Glossary
506
-
507
- *Clearly define terms in order to be accessible across audiences.*
508
- -->
509
-
510
- <!--
511
- ## Model Card Authors
512
-
513
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
514
- -->
515
-
516
- <!--
517
- ## Model Card Contact
518
-
519
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
520
- -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/config.json DELETED
@@ -1,26 +0,0 @@
1
- {
2
- "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
- "architectures": [
4
- "BertModel"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 1536,
14
- "layer_norm_eps": 1e-12,
15
- "max_position_embeddings": 512,
16
- "model_type": "bert",
17
- "num_attention_heads": 12,
18
- "num_hidden_layers": 6,
19
- "pad_token_id": 0,
20
- "position_embedding_type": "absolute",
21
- "torch_dtype": "float32",
22
- "transformers_version": "4.44.2",
23
- "type_vocab_size": 2,
24
- "use_cache": true,
25
- "vocab_size": 30522
26
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/config_sentence_transformers.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "__version__": {
3
- "sentence_transformers": "3.1.1",
4
- "transformers": "4.44.2",
5
- "pytorch": "2.4.1+cpu"
6
- },
7
- "prompts": {},
8
- "default_prompt_name": null,
9
- "similarity_fn_name": null
10
- }
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/modules.json DELETED
@@ -1,20 +0,0 @@
1
- [
2
- {
3
- "idx": 0,
4
- "name": "0",
5
- "path": "",
6
- "type": "sentence_transformers.models.Transformer"
7
- },
8
- {
9
- "idx": 1,
10
- "name": "1",
11
- "path": "1_Pooling",
12
- "type": "sentence_transformers.models.Pooling"
13
- },
14
- {
15
- "idx": 2,
16
- "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
- }
20
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/sentence_bert_config.json DELETED
@@ -1,4 +0,0 @@
1
- {
2
- "max_seq_length": 256,
3
- "do_lower_case": false
4
- }
 
 
 
 
 
fine_tuned_embedding_model/special_tokens_map.json DELETED
@@ -1,37 +0,0 @@
1
- {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
fine_tuned_embedding_model/tokenizer_config.json DELETED
@@ -1,64 +0,0 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "100": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "101": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "102": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "103": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": true,
48
- "mask_token": "[MASK]",
49
- "max_length": 128,
50
- "model_max_length": 256,
51
- "never_split": null,
52
- "pad_to_multiple_of": null,
53
- "pad_token": "[PAD]",
54
- "pad_token_type_id": 0,
55
- "padding_side": "right",
56
- "sep_token": "[SEP]",
57
- "stride": 0,
58
- "strip_accents": null,
59
- "tokenize_chinese_chars": true,
60
- "tokenizer_class": "BertTokenizer",
61
- "truncation_side": "right",
62
- "truncation_strategy": "longest_first",
63
- "unk_token": "[UNK]"
64
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tuned_embedding_model/vocab.txt DELETED
The diff for this file is too large to render. See raw diff