|
import os |
|
import tempfile |
|
import time |
|
import re |
|
import json |
|
from typing import List, Optional, Dict, Any |
|
from urllib.parse import urlparse |
|
import requests |
|
import yt_dlp |
|
from bs4 import BeautifulSoup |
|
from difflib import SequenceMatcher |
|
|
|
from langchain_core.messages import HumanMessage, SystemMessage |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper, WikipediaAPIWrapper |
|
from langchain.agents import Tool, AgentExecutor, ConversationalAgent, initialize_agent, AgentType |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.prompts import MessagesPlaceholder |
|
from langchain.tools import BaseTool, Tool, tool |
|
from google.generativeai.types import HarmCategory, HarmBlockThreshold |
|
from PIL import Image |
|
import google.generativeai as genai |
|
from pydantic import Field |
|
|
|
from smolagents import WikipediaSearchTool |
|
|
|
class SmolagentToolWrapper(BaseTool): |
|
"""Wrapper for smolagents tools to make them compatible with LangChain.""" |
|
|
|
wrapped_tool: object = Field(description="The wrapped smolagents tool") |
|
|
|
def __init__(self, tool): |
|
"""Initialize the wrapper with a smolagents tool.""" |
|
super().__init__( |
|
name=tool.name, |
|
description=tool.description, |
|
return_direct=False, |
|
wrapped_tool=tool |
|
) |
|
|
|
def _run(self, query: str) -> str: |
|
"""Use the wrapped tool to execute the query.""" |
|
try: |
|
|
|
if hasattr(self.wrapped_tool, 'search'): |
|
return self.wrapped_tool.search(query) |
|
|
|
return self.wrapped_tool(query) |
|
except Exception as e: |
|
return f"Error using tool: {str(e)}" |
|
|
|
def _arun(self, query: str) -> str: |
|
"""Async version - just calls sync version since smolagents tools don't support async.""" |
|
return self._run(query) |
|
|
|
class WebSearchTool: |
|
def __init__(self): |
|
self.last_request_time = 0 |
|
self.min_request_interval = 2.0 |
|
self.max_retries = 10 |
|
|
|
def search(self, query: str, domain: Optional[str] = None) -> str: |
|
"""Perform web search with rate limiting and retries.""" |
|
for attempt in range(self.max_retries): |
|
|
|
current_time = time.time() |
|
time_since_last = current_time - self.last_request_time |
|
if time_since_last < self.min_request_interval: |
|
time.sleep(self.min_request_interval - time_since_last) |
|
|
|
try: |
|
|
|
results = self._do_search(query, domain) |
|
self.last_request_time = time.time() |
|
return results |
|
except Exception as e: |
|
if "202 Ratelimit" in str(e): |
|
if attempt < self.max_retries - 1: |
|
|
|
wait_time = (2 ** attempt) * self.min_request_interval |
|
time.sleep(wait_time) |
|
continue |
|
return f"Search failed after {self.max_retries} attempts: {str(e)}" |
|
|
|
return "Search failed due to rate limiting" |
|
|
|
def _do_search(self, query: str, domain: Optional[str] = None) -> str: |
|
"""Perform the actual search request.""" |
|
try: |
|
|
|
base_url = "https://html.duckduckgo.com/html" |
|
params = {"q": query} |
|
if domain: |
|
params["q"] += f" site:{domain}" |
|
|
|
|
|
response = requests.get(base_url, params=params, timeout=10) |
|
response.raise_for_status() |
|
|
|
if response.status_code == 202: |
|
raise Exception("202 Ratelimit") |
|
|
|
|
|
results = [] |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
for result in soup.find_all('div', {'class': 'result'}): |
|
title = result.find('a', {'class': 'result__a'}) |
|
snippet = result.find('a', {'class': 'result__snippet'}) |
|
if title and snippet: |
|
results.append({ |
|
'title': title.get_text(), |
|
'snippet': snippet.get_text(), |
|
'url': title.get('href') |
|
}) |
|
|
|
|
|
formatted_results = [] |
|
for r in results[:10]: |
|
formatted_results.append(f"[{r['title']}]({r['url']})\n{r['snippet']}\n") |
|
|
|
return "## Search Results\n\n" + "\n".join(formatted_results) |
|
|
|
except requests.RequestException as e: |
|
raise Exception(f"Search request failed: {str(e)}") |
|
|
|
def save_and_read_file(content: str, filename: Optional[str] = None) -> str: |
|
""" |
|
Save content to a temporary file and return the path. |
|
Useful for processing files from the GAIA API. |
|
|
|
Args: |
|
content: The content to save to the file |
|
filename: Optional filename, will generate a random name if not provided |
|
|
|
Returns: |
|
Path to the saved file |
|
""" |
|
temp_dir = tempfile.gettempdir() |
|
if filename is None: |
|
temp_file = tempfile.NamedTemporaryFile(delete=False) |
|
filepath = temp_file.name |
|
else: |
|
filepath = os.path.join(temp_dir, filename) |
|
|
|
|
|
with open(filepath, 'w') as f: |
|
f.write(content) |
|
|
|
return f"File saved to {filepath}. You can read this file to process its contents." |
|
|
|
|
|
def download_file_from_url(url: str, filename: Optional[str] = None) -> str: |
|
""" |
|
Download a file from a URL and save it to a temporary location. |
|
|
|
Args: |
|
url: The URL to download from |
|
filename: Optional filename, will generate one based on URL if not provided |
|
|
|
Returns: |
|
Path to the downloaded file |
|
""" |
|
try: |
|
|
|
if not filename: |
|
path = urlparse(url).path |
|
filename = os.path.basename(path) |
|
if not filename: |
|
|
|
import uuid |
|
filename = f"downloaded_{uuid.uuid4().hex[:8]}" |
|
|
|
|
|
temp_dir = tempfile.gettempdir() |
|
filepath = os.path.join(temp_dir, filename) |
|
|
|
|
|
response = requests.get(url, stream=True) |
|
response.raise_for_status() |
|
|
|
|
|
with open(filepath, 'wb') as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
return f"File downloaded to {filepath}. You can now process this file." |
|
except Exception as e: |
|
return f"Error downloading file: {str(e)}" |
|
|
|
|
|
def extract_text_from_image(image_path: str) -> str: |
|
""" |
|
Extract text from an image using pytesseract (if available). |
|
|
|
Args: |
|
image_path: Path to the image file |
|
|
|
Returns: |
|
Extracted text or error message |
|
""" |
|
try: |
|
|
|
import pytesseract |
|
from PIL import Image |
|
|
|
|
|
image = Image.open(image_path) |
|
|
|
|
|
text = pytesseract.image_to_string(image) |
|
|
|
return f"Extracted text from image:\n\n{text}" |
|
except ImportError: |
|
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system." |
|
except Exception as e: |
|
return f"Error extracting text from image: {str(e)}" |
|
|
|
|
|
def analyze_csv_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze a CSV file using pandas and answer a question about it. |
|
|
|
Args: |
|
file_path: Path to the CSV file |
|
query: Question about the data |
|
|
|
Returns: |
|
Analysis result or error message |
|
""" |
|
try: |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_csv(file_path) |
|
|
|
|
|
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
except ImportError: |
|
return "Error: pandas is not installed. Please install it with 'pip install pandas'." |
|
except Exception as e: |
|
return f"Error analyzing CSV file: {str(e)}" |
|
|
|
@tool |
|
def analyze_excel_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze an Excel file using pandas and answer a question about it. |
|
|
|
Args: |
|
file_path: Path to the Excel file |
|
query: Question about the data |
|
|
|
Returns: |
|
Analysis result or error message |
|
""" |
|
try: |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_excel(file_path) |
|
|
|
|
|
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
except ImportError: |
|
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'." |
|
except Exception as e: |
|
return f"Error analyzing Excel file: {str(e)}" |
|
|
|
class GeminiAgent: |
|
def __init__(self, api_key: str, model_name: str = "gemini-2.0-flash"): |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
warnings.filterwarnings("ignore", message=".*will be deprecated.*") |
|
warnings.filterwarnings("ignore", "LangChain.*") |
|
|
|
self.api_key = api_key |
|
self.model_name = model_name |
|
|
|
|
|
genai.configure(api_key=api_key) |
|
|
|
|
|
self.llm = self._setup_llm() |
|
|
|
|
|
self.tools = [ |
|
SmolagentToolWrapper(WikipediaSearchTool()), |
|
Tool( |
|
name="analyze_video", |
|
func=self._analyze_video, |
|
description="Analyze YouTube video content directly" |
|
), |
|
Tool( |
|
name="analyze_image", |
|
func=self._analyze_image, |
|
description="Analyze image content" |
|
), |
|
Tool( |
|
name="analyze_table", |
|
func=self._analyze_table, |
|
description="Analyze table or matrix data" |
|
), |
|
Tool( |
|
name="analyze_list", |
|
func=self._analyze_list, |
|
description="Analyze and categorize list items" |
|
), |
|
Tool( |
|
name="web_search", |
|
func=self._web_search, |
|
description="Search the web for information" |
|
) |
|
] |
|
|
|
|
|
self.memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
return_messages=True |
|
) |
|
|
|
|
|
self.agent = self._setup_agent() |
|
|
|
|
|
def run(self, query: str) -> str: |
|
"""Run the agent on a query with incremental retries.""" |
|
max_retries = 3 |
|
base_sleep = 1 |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
|
|
|
|
response = self.agent.run(query) |
|
return response |
|
|
|
except Exception as e: |
|
sleep_time = base_sleep * (attempt + 1) |
|
if attempt < max_retries - 1: |
|
print(f"Attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...") |
|
time.sleep(sleep_time) |
|
continue |
|
return f"Error processing query after {max_retries} attempts: {str(e)}" |
|
|
|
print("Agent processed all queries!") |
|
|
|
def _clean_response(self, response: str) -> str: |
|
"""Clean up the response from the agent.""" |
|
|
|
cleaned = re.sub(r'> Entering new AgentExecutor chain...|> Finished chain.', '', response) |
|
cleaned = re.sub(r'Thought:.*?Action:.*?Action Input:.*?Observation:.*?\n', '', cleaned, flags=re.DOTALL) |
|
return cleaned.strip() |
|
|
|
def run_interactive(self): |
|
print("AI Assistant Ready! (Type 'exit' to quit)") |
|
|
|
while True: |
|
query = input("You: ").strip() |
|
if query.lower() == 'exit': |
|
print("Goodbye!") |
|
break |
|
|
|
print("Assistant:", self.run(query)) |
|
|
|
def _web_search(self, query: str, domain: Optional[str] = None) -> str: |
|
"""Perform web search with rate limiting and retries.""" |
|
try: |
|
|
|
search = DuckDuckGoSearchAPIWrapper(max_results=5) |
|
results = search.run(f"{query} {f'site:{domain}' if domain else ''}") |
|
|
|
if not results or results.strip() == "": |
|
return "No search results found." |
|
|
|
return results |
|
|
|
except Exception as e: |
|
return f"Search error: {str(e)}" |
|
|
|
def _analyze_video(self, url: str) -> str: |
|
"""Analyze video content using Gemini's video understanding capabilities.""" |
|
try: |
|
|
|
parsed_url = urlparse(url) |
|
if not all([parsed_url.scheme, parsed_url.netloc]): |
|
return "Please provide a valid video URL with http:// or https:// prefix." |
|
|
|
|
|
if 'youtube.com' not in url and 'youtu.be' not in url: |
|
return "Only YouTube videos are supported at this time." |
|
|
|
try: |
|
|
|
ydl_opts = { |
|
'quiet': True, |
|
'no_warnings': True, |
|
'extract_flat': True, |
|
'no_playlist': True, |
|
'youtube_include_dash_manifest': False |
|
} |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
|
|
info = ydl.extract_info(url, download=False, process=False) |
|
if not info: |
|
return "Could not extract video information." |
|
|
|
title = info.get('title', 'Unknown') |
|
description = info.get('description', '') |
|
|
|
|
|
prompt = f"""Please analyze this YouTube video: |
|
Title: {title} |
|
URL: {url} |
|
Description: {description} |
|
|
|
Please provide a detailed analysis focusing on: |
|
1. Main topic and key points from the title and description |
|
2. Expected visual elements and scenes |
|
3. Overall message or purpose |
|
4. Target audience""" |
|
|
|
|
|
messages = [HumanMessage(content=prompt)] |
|
response = self.llm.invoke(messages) |
|
return response.content if hasattr(response, 'content') else str(response) |
|
|
|
except Exception as e: |
|
if 'Sign in to confirm' in str(e): |
|
return "This video requires age verification or sign-in. Please provide a different video URL." |
|
return f"Error accessing video: {str(e)}" |
|
|
|
except Exception as e: |
|
return f"Error extracting video info: {str(e)}" |
|
|
|
except Exception as e: |
|
return f"Error analyzing video: {str(e)}" |
|
|
|
def _analyze_table(self, table_data: str) -> str: |
|
"""Analyze table or matrix data.""" |
|
try: |
|
if not table_data or not isinstance(table_data, str): |
|
return "Please provide valid table data for analysis." |
|
|
|
prompt = f"""Please analyze this table: |
|
|
|
{table_data} |
|
|
|
Provide a detailed analysis including: |
|
1. Structure and format |
|
2. Key patterns or relationships |
|
3. Notable findings |
|
4. Any mathematical properties (if applicable)""" |
|
|
|
messages = [HumanMessage(content=prompt)] |
|
response = self.llm.invoke(messages) |
|
return response.content if hasattr(response, 'content') else str(response) |
|
|
|
except Exception as e: |
|
return f"Error analyzing table: {str(e)}" |
|
|
|
def _analyze_image(self, image_data: str) -> str: |
|
"""Analyze image content.""" |
|
try: |
|
if not image_data or not isinstance(image_data, str): |
|
return "Please provide a valid image for analysis." |
|
|
|
prompt = f"""Please analyze this image: |
|
|
|
{image_data} |
|
|
|
Focus on: |
|
1. Visual elements and objects |
|
2. Colors and composition |
|
3. Text or numbers (if present) |
|
4. Overall context and meaning""" |
|
|
|
messages = [HumanMessage(content=prompt)] |
|
response = self.llm.invoke(messages) |
|
return response.content if hasattr(response, 'content') else str(response) |
|
|
|
except Exception as e: |
|
return f"Error analyzing image: {str(e)}" |
|
|
|
def _analyze_list(self, list_data: str) -> str: |
|
"""Analyze and categorize list items.""" |
|
if not list_data: |
|
return "No list data provided." |
|
try: |
|
items = [x.strip() for x in list_data.split(',')] |
|
if not items: |
|
return "Please provide a comma-separated list of items." |
|
|
|
return "Please provide the list items for analysis." |
|
except Exception as e: |
|
return f"Error analyzing list: {str(e)}" |
|
|
|
def _setup_llm(self): |
|
"""Set up the language model.""" |
|
|
|
generation_config = { |
|
"temperature": 0.0, |
|
"max_output_tokens": 2000, |
|
"candidate_count": 1, |
|
} |
|
|
|
safety_settings = { |
|
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, |
|
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, |
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, |
|
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, |
|
} |
|
|
|
return ChatGoogleGenerativeAI( |
|
model="gemini-2.0-flash", |
|
google_api_key=self.api_key, |
|
temperature=0, |
|
max_output_tokens=2000, |
|
generation_config=generation_config, |
|
safety_settings=safety_settings, |
|
system_message=SystemMessage(content=( |
|
"You are a precise AI assistant that helps users find information and analyze content. " |
|
"You can directly understand and analyze YouTube videos, images, and other content. " |
|
"When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. " |
|
"For lists, tables, and structured data, ensure proper formatting and organization. " |
|
"If you need additional context, clearly explain what is needed." |
|
)) |
|
) |
|
|
|
def _setup_agent(self) -> AgentExecutor: |
|
"""Set up the agent with tools and system message.""" |
|
|
|
|
|
PREFIX = """You are a helpful AI assistant that can use various tools to answer questions and analyze content. You have access to tools for web search, Wikipedia lookup, and multimedia analysis. |
|
|
|
TOOLS: |
|
------ |
|
You have access to the following tools:""" |
|
|
|
FORMAT_INSTRUCTIONS = """To use a tool, use the following format: |
|
|
|
Thought: Do I need to use a tool? Yes |
|
Action: the action to take, should be one of [{tool_names}] |
|
Action Input: the input to the action |
|
Observation: the result of the action |
|
|
|
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: |
|
|
|
Thought: Do I need to use a tool? No |
|
Final Answer: [your response here] |
|
|
|
Begin! Remember to ALWAYS include 'Thought:', 'Action:', 'Action Input:', and 'Final Answer:' in your responses.""" |
|
|
|
SUFFIX = """Previous conversation history: |
|
{chat_history} |
|
|
|
New question: {input} |
|
{agent_scratchpad}""" |
|
|
|
|
|
agent = ConversationalAgent.from_llm_and_tools( |
|
llm=self.llm, |
|
tools=self.tools, |
|
prefix=PREFIX, |
|
format_instructions=FORMAT_INSTRUCTIONS, |
|
suffix=SUFFIX, |
|
input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"], |
|
handle_parsing_errors=True |
|
) |
|
|
|
|
|
return AgentExecutor.from_agent_and_tools( |
|
agent=agent, |
|
tools=self.tools, |
|
memory=self.memory, |
|
max_iterations=5, |
|
verbose=True, |
|
handle_parsing_errors=True, |
|
return_only_outputs=True |
|
) |
|
|
|
@tool |
|
def analyze_csv_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze a CSV file using pandas and answer a question about it. |
|
|
|
Args: |
|
file_path: Path to the CSV file |
|
query: Question about the data |
|
|
|
Returns: |
|
Analysis result or error message |
|
""" |
|
try: |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_csv(file_path) |
|
|
|
|
|
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
except ImportError: |
|
return "Error: pandas is not installed. Please install it with 'pip install pandas'." |
|
except Exception as e: |
|
return f"Error analyzing CSV file: {str(e)}" |
|
|
|
@tool |
|
def analyze_excel_file(file_path: str, query: str) -> str: |
|
""" |
|
Analyze an Excel file using pandas and answer a question about it. |
|
|
|
Args: |
|
file_path: Path to the Excel file |
|
query: Question about the data |
|
|
|
Returns: |
|
Analysis result or error message |
|
""" |
|
try: |
|
import pandas as pd |
|
|
|
|
|
df = pd.read_excel(file_path) |
|
|
|
|
|
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
result += "Summary statistics:\n" |
|
result += str(df.describe()) |
|
|
|
return result |
|
except ImportError: |
|
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'." |
|
except Exception as e: |
|
return f"Error analyzing Excel file: {str(e)}" |
|
|