File size: 18,083 Bytes
e466a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
from smolagents import (
    CodeAgent, 
    DuckDuckGoSearchTool, 
    HfApiModel, 
    LiteLLMModel,
    OpenAIServerModel,
    PythonInterpreterTool,
    tool,
    InferenceClientModel
)
from typing import List, Dict, Any, Optional
import os
import tempfile
import re
import json
import requests
from urllib.parse import urlparse

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a temporary file and return the path.
    Useful for processing files from the GAIA API.
    
    Args:
        content: The content to save to the file
        filename: Optional filename, will generate a random name if not provided
        
    Returns:
        Path to the saved file
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)
    
    # Write content to the file
    with open(filepath, 'w') as f:
        f.write(content)
    
    return f"File saved to {filepath}. You can read this file to process its contents."

@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    
    Args:
        url: The URL to download from
        filename: Optional filename, will generate one based on URL if not provided
        
    Returns:
        Path to the downloaded file
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"
        
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)
        
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        # Save the file
        with open(filepath, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"

@tool
def extract_text_from_image(image_path: str) -> str:
    """
    Extract text from an image using pytesseract (if available).
    
    Args:
        image_path: Path to the image file
        
    Returns:
        Extracted text or error message
    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image
        
        # Open the image
        image = Image.open(image_path)
        
        # Extract text
        text = pytesseract.image_to_string(image)
        
        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    
    Args:
        file_path: Path to the CSV file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    
    Args:
        file_path: Path to the Excel file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

class GAIAAgent:
    def __init__(
        self, 
        model_type: str = "HfApiModel", 
        model_id: Optional[str] = None,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
        temperature: float = 0.2,
        executor_type: str = "local",  # Changed from use_e2b to executor_type
        additional_imports: List[str] = None,
        additional_tools: List[Any] = None,
        system_prompt: Optional[str] = None,  # We'll still accept this parameter but not use it directly
        verbose: bool = False,
        provider: Optional[str] = None,  # Add provider for InferenceClientModel
        timeout: Optional[int] = None   # Add timeout for InferenceClientModel
    ):
        """
        Initialize a GAIAAgent with specified configuration
        
        Args:
            model_type: Type of model to use (HfApiModel, LiteLLMModel, OpenAIServerModel, InferenceClientModel)
            model_id: ID of the model to use
            api_key: API key for the model provider
            api_base: Base URL for API calls
            temperature: Temperature for text generation
            executor_type: Type of executor for code execution ('local' or 'e2b')
            additional_imports: Additional Python modules to allow importing
            additional_tools: Additional tools to provide to the agent
            system_prompt: Custom system prompt to use (not directly used, kept for backward compatibility)
            verbose: Enable verbose logging
            provider: Provider for InferenceClientModel (e.g., "hf-inference")
            timeout: Timeout in seconds for API calls
        """
        # Set verbosity
        self.verbose = verbose
        self.system_prompt = system_prompt  # Store for potential future use
        
        # Initialize model based on configuration
        if model_type == "HfApiModel":
            if api_key is None:
                api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
                if not api_key:
                    raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
            
            if self.verbose:
                print(f"Using Hugging Face token: {api_key[:5]}...")
                
            self.model = HfApiModel(
                model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
                token=api_key,
                temperature=temperature
            )
        elif model_type == "InferenceClientModel":
            if api_key is None:
                api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
                if not api_key:
                    raise ValueError("No Hugging Face token provided. Please set HUGGINGFACEHUB_API_TOKEN environment variable or pass api_key parameter.")
            
            if self.verbose:
                print(f"Using Hugging Face token: {api_key[:5]}...")
                
            self.model = InferenceClientModel(
                model_id=model_id or "meta-llama/Llama-3-70B-Instruct",
                provider=provider or "hf-inference",
                token=api_key,
                timeout=timeout or 120,
                temperature=temperature
            )
        elif model_type == "LiteLLMModel":
            from smolagents import LiteLLMModel
            self.model = LiteLLMModel(
                model_id=model_id or "gpt-4o",
                api_key=api_key or os.getenv("OPENAI_API_KEY"),
                temperature=temperature
            )
        elif model_type == "OpenAIServerModel":
            # Check for xAI API key and base URL first
            xai_api_key = os.getenv("XAI_API_KEY")
            xai_api_base = os.getenv("XAI_API_BASE")
            
            # If xAI credentials are available, use them
            if xai_api_key and api_key is None:
                api_key = xai_api_key
                if self.verbose:
                    print(f"Using xAI API key: {api_key[:5]}...")
            
            # If no API key specified, fall back to OPENAI_API_KEY
            if api_key is None:
                api_key = os.getenv("OPENAI_API_KEY")
                if not api_key:
                    raise ValueError("No OpenAI API key provided. Please set OPENAI_API_KEY or XAI_API_KEY environment variable or pass api_key parameter.")
            
            # If xAI API base is available and no api_base is provided, use it
            if xai_api_base and api_base is None:
                api_base = xai_api_base
                if self.verbose:
                    print(f"Using xAI API base URL: {api_base}")
            
            # If no API base specified but environment variable available, use it
            if api_base is None:
                api_base = os.getenv("AGENT_API_BASE")
                if api_base and self.verbose:
                    print(f"Using API base from AGENT_API_BASE: {api_base}")
            
            self.model = OpenAIServerModel(
                model_id=model_id or "gpt-4o",
                api_key=api_key,
                api_base=api_base,
                temperature=temperature
            )
        else:
            raise ValueError(f"Unknown model type: {model_type}")
        
        if self.verbose:
            print(f"Initialized model: {model_type} - {model_id}")
        
        # Initialize default tools
        self.tools = [
            DuckDuckGoSearchTool(),
            PythonInterpreterTool(),
            save_and_read_file,
            download_file_from_url,
            analyze_csv_file,
            analyze_excel_file
        ]
        
        # Add extract_text_from_image if PIL and pytesseract are available
        try:
            import pytesseract
            from PIL import Image
            self.tools.append(extract_text_from_image)
            if self.verbose:
                print("Added image processing tool")
        except ImportError:
            if self.verbose:
                print("Image processing libraries not available")
        
        # Add any additional tools
        if additional_tools:
            self.tools.extend(additional_tools)
            
        if self.verbose:
            print(f"Initialized with {len(self.tools)} tools")
        
        # Setup imports allowed
        self.imports = ["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
        if additional_imports:
            self.imports.extend(additional_imports)
            
        # Initialize the CodeAgent
        executor_kwargs = {}
        if executor_type == "e2b":
            try:
                # Try to import e2b dependencies to check if they're available
                from e2b_code_interpreter import Sandbox
                if self.verbose:
                    print("Using e2b executor")
            except ImportError:
                if self.verbose:
                    print("e2b dependencies not found, falling back to local executor")
                executor_type = "local"  # Fallback to local if e2b is not available
        
        self.agent = CodeAgent(
            tools=self.tools,
            model=self.model,
            additional_authorized_imports=self.imports,
            executor_type=executor_type,
            executor_kwargs=executor_kwargs,
            verbosity_level=2 if self.verbose else 0
        )
        
        if self.verbose:
            print("Agent initialized and ready")
    
    def answer_question(self, question: str, task_file_path: Optional[str] = None) -> str:
        """
        Process a GAIA benchmark question and return the answer
        
        Args:
            question: The question to answer
            task_file_path: Optional path to a file associated with the question
            
        Returns:
            The answer to the question
        """
        try:
            if self.verbose:
                print(f"Processing question: {question}")
                if task_file_path:
                    print(f"With associated file: {task_file_path}")
            
            # Create a context with file information if available
            context = question
            file_content = None
            
            # If there's a file, read it and include its content in the context
            if task_file_path:
                try:
                    with open(task_file_path, 'r') as f:
                        file_content = f.read()
                    
                    # Determine file type from extension
                    import os
                    file_ext = os.path.splitext(task_file_path)[1].lower()
                    
                    context = f"""
Question: {question}

This question has an associated file. Here is the file content:

```{file_ext}
{file_content}
```

Analyze the file content above to answer the question.
"""
                except Exception as file_e:
                    context = f"""
Question: {question}

This question has an associated file at path: {task_file_path}
However, there was an error reading the file: {file_e}
You can still try to answer the question based on the information provided.
"""
            
            # Check for special cases that need specific formatting
            # Reversed text questions
            if question.startswith(".") or ".rewsna eht sa" in question:
                context = f"""
This question appears to be in reversed text. Here's the reversed version:
{question[::-1]}

Now answer the question above. Remember to format your answer exactly as requested.
"""
            
            # Add a prompt to ensure precise answers
            full_prompt = f"""{context}

When answering, provide ONLY the precise answer requested. 
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
"""
            
            # Run the agent with the question
            answer = self.agent.run(full_prompt)
            
            # Clean up the answer to ensure it's in the expected format
            # Remove common prefixes that models often add
            answer = self._clean_answer(answer)
            
            if self.verbose:
                print(f"Generated answer: {answer}")
                
            return answer
        except Exception as e:
            error_msg = f"Error answering question: {e}"
            if self.verbose:
                print(error_msg)
            return error_msg
    
    def _clean_answer(self, answer: any) -> str:
        """
        Clean up the answer to remove common prefixes and formatting
        that models often add but that can cause exact match failures.
        
        Args:
            answer: The raw answer from the model
            
        Returns:
            The cleaned answer as a string
        """
        # Convert non-string types to strings
        if not isinstance(answer, str):
            # Handle numeric types (float, int)
            if isinstance(answer, float):
                # Format floating point numbers properly
                # Check if it's an integer value in float form (e.g., 12.0)
                if answer.is_integer():
                    formatted_answer = str(int(answer))
                else:
                    # For currency values that might need formatting
                    if abs(answer) >= 1000:
                        formatted_answer = f"${answer:,.2f}"
                    else:
                        formatted_answer = str(answer)
                return formatted_answer
            elif isinstance(answer, int):
                return str(answer)
            else:
                # For any other type
                return str(answer)
        
        # Now we know answer is a string, so we can safely use string methods
        # Normalize whitespace
        answer = answer.strip()
        
        # Remove common prefixes and formatting that models add
        prefixes_to_remove = [
            "The answer is ", 
            "Answer: ",
            "Final answer: ",
            "The result is ",
            "To answer this question: ",
            "Based on the information provided, ",
            "According to the information: ",
        ]
        
        for prefix in prefixes_to_remove:
            if answer.startswith(prefix):
                answer = answer[len(prefix):].strip()
        
        # Remove quotes if they wrap the entire answer
        if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
            answer = answer[1:-1].strip()
        
        return answer