Spaces:
Runtime error
Runtime error
import transformers | |
import gradio as gr | |
import datasets | |
import torch | |
import os | |
from diffusers import StableDiffusionPipeline | |
def generate(movie, celebrity, scale): | |
prompt = f'Poster from movie {movie}, {celebrity} wearing lion head opal opal opal opal opal opal + high-tech ornate diamond bejeweled seductress with sapphire, ruby, emerald, gold, live-action fairy tale character, hyper realistic, live-action epic dreams, cinematic concept art, beautiful dark-skinned, beautiful lighting, intricate gold-and-silver-plated armor' | |
image = pipe(prompt, generator=generator, guidance_scale=scale).images[0] | |
return image | |
# Initialise the token | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
generator = torch.Generator(device=device) | |
pipe = pipe.to(device) | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, 'crowdsourced-movieposter-demo') | |
gr.Interface( | |
fn=generate, | |
inputs=[gr.Textbox(label='Celebrity Name'), gr.Dropdown(['Mission Impossible', 'Avatar', 'Abyss', 'TOO OLD TO DIE YOUNG', 'The Last Dual','The beginning of everything'], label='Movie'), gr.Slider(label='Image Accuracy', minimum=7.5, maximum=20, value=12)], | |
outputs=gr.Image(type='pil') , | |
allow_flagging="manual", | |
flagging_options=["No Image", "good", "bad"], | |
flagging_callback=hf_writer | |
).launch() |