Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
import os
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from PyPDF2 import PdfReader
|
8 |
from docx import Document
|
@@ -14,28 +14,29 @@ def load_models():
|
|
14 |
# Text embedding model
|
15 |
embed_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
summary_tokenizer = AutoTokenizer.from_pretrained(
|
21 |
"ibm/granite-13b-instruct-v2",
|
22 |
-
|
23 |
trust_remote_code=True
|
24 |
)
|
25 |
summary_model = AutoModelForCausalLM.from_pretrained(
|
26 |
"ibm/granite-13b-instruct-v2",
|
27 |
-
|
28 |
trust_remote_code=True
|
29 |
)
|
30 |
|
31 |
qa_tokenizer = AutoTokenizer.from_pretrained(
|
32 |
"ibm/granite-13b-instruct-v2",
|
33 |
-
|
34 |
trust_remote_code=True
|
35 |
)
|
36 |
qa_model = AutoModelForCausalLM.from_pretrained(
|
37 |
"ibm/granite-13b-instruct-v2",
|
38 |
-
|
39 |
trust_remote_code=True
|
40 |
)
|
41 |
|
|
|
2 |
import os
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from PyPDF2 import PdfReader
|
8 |
from docx import Document
|
|
|
14 |
# Text embedding model
|
15 |
embed_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
16 |
|
17 |
+
# Replace with your actual token from Hugging Face
|
18 |
+
TOKEN = "TOKEN"
|
19 |
+
|
20 |
+
# IBM Granite models with proper token usage
|
21 |
summary_tokenizer = AutoTokenizer.from_pretrained(
|
22 |
"ibm/granite-13b-instruct-v2",
|
23 |
+
use_auth_token=TOKEN,
|
24 |
trust_remote_code=True
|
25 |
)
|
26 |
summary_model = AutoModelForCausalLM.from_pretrained(
|
27 |
"ibm/granite-13b-instruct-v2",
|
28 |
+
use_auth_token=TOKEN,
|
29 |
trust_remote_code=True
|
30 |
)
|
31 |
|
32 |
qa_tokenizer = AutoTokenizer.from_pretrained(
|
33 |
"ibm/granite-13b-instruct-v2",
|
34 |
+
use_auth_token=TOKEN,
|
35 |
trust_remote_code=True
|
36 |
)
|
37 |
qa_model = AutoModelForCausalLM.from_pretrained(
|
38 |
"ibm/granite-13b-instruct-v2",
|
39 |
+
use_auth_token=TOKEN,
|
40 |
trust_remote_code=True
|
41 |
)
|
42 |
|