sunbal7 commited on
Commit
9bb7380
·
verified ·
1 Parent(s): d3578c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -99
app.py CHANGED
@@ -5,19 +5,24 @@ import faiss
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
7
  import fitz # PyMuPDF for PDF extraction
 
8
  from langchain_text_splitters import RecursiveCharacterTextSplitter
9
 
 
10
  # Configuration
 
11
  MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
12
  EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
13
  CHUNK_SIZE = 512
14
  CHUNK_OVERLAP = 64
15
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
16
 
 
 
 
17
  @st.cache_resource
18
  def load_models():
19
  try:
20
- # Load tokenizer and generative model with trust_remote_code enabled
21
  tokenizer = AutoTokenizer.from_pretrained(
22
  MODEL_NAME,
23
  trust_remote_code=True,
@@ -25,25 +30,24 @@ def load_models():
25
  )
26
  model = AutoModelForCausalLM.from_pretrained(
27
  MODEL_NAME,
28
- device_map="auto" if DEVICE == "cuda" else None,
29
- torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
30
  trust_remote_code=True,
31
  revision="main",
 
 
32
  low_cpu_mem_usage=True
33
  ).eval()
34
-
35
- # Load embedding model for FAISS
36
  embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
37
  return tokenizer, model, embedder
38
-
39
  except Exception as e:
40
  st.error(f"Model loading failed: {str(e)}")
41
  st.stop()
42
 
43
  tokenizer, model, embedder = load_models()
44
 
45
- # Improved text processing: splits text into chunks
46
- def process_text(text):
 
 
47
  splitter = RecursiveCharacterTextSplitter(
48
  chunk_size=CHUNK_SIZE,
49
  chunk_overlap=CHUNK_OVERLAP,
@@ -51,61 +55,48 @@ def process_text(text):
51
  )
52
  return splitter.split_text(text)
53
 
54
- # Enhanced PDF extraction using PyMuPDF
55
- def extract_pdf_text(uploaded_file):
56
- try:
57
- doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
58
- return "\n".join([page.get_text() for page in doc])
59
- except Exception as e:
60
- st.error(f"PDF extraction error: {str(e)}")
 
 
 
 
 
 
 
 
 
 
 
 
61
  return ""
62
 
63
- # Multi-step summarization
64
- def generate_summary(text):
65
- chunks = process_text(text)[:10] # Use first 10 chunks for summary
66
- summaries = []
67
-
68
- for chunk in chunks:
69
- prompt = f"""<|user|>
70
- Summarize this text section focusing on key themes, characters, and plot points:
71
- {chunk[:2000]}
72
- <|assistant|>
73
- """
74
- inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
75
- outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
76
- summary_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
77
- summaries.append(summary_text)
78
-
79
- # Combine individual summaries into one comprehensive summary
80
- combined = "\n".join(summaries)
81
- final_prompt = f"""<|user|>
82
- Combine these section summaries into a coherent book summary:
83
- {combined}
84
- <|assistant|>
85
- The comprehensive summary is:"""
86
-
87
- inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
88
- outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
89
- full_summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
90
- return full_summary.split(":")[-1].strip()
91
-
92
- # Enhanced retrieval system using FAISS
93
- def build_faiss_index(texts):
94
- embeddings = embedder.encode(texts, show_progress_bar=True)
95
  dimension = embeddings.shape[1]
96
  index = faiss.IndexFlatIP(dimension)
97
  faiss.normalize_L2(embeddings)
98
  index.add(embeddings)
99
  return index
100
 
101
- # Context-aware answer generation
 
 
 
 
 
 
 
 
 
 
102
  def generate_answer(query, context):
103
- prompt = f"""<|user|>
104
- Using this context: {context}
105
- Answer the question precisely and truthfully. If unsure, say "I don't know".
106
- Question: {query}
107
- <|assistant|>
108
- """
109
  inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
110
  outputs = model.generate(
111
  **inputs,
@@ -115,52 +106,42 @@ Question: {query}
115
  repetition_penalty=1.2,
116
  do_sample=True
117
  )
118
- answer_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
119
- return answer_text.split("<|assistant|>")[-1].strip()
120
 
121
- # Streamlit UI setup
122
- st.set_page_config(page_title="📚 Smart Book Analyst", layout="wide")
123
- st.title("📚 AI-Powered Book Analysis System")
 
 
 
124
 
125
- # File upload
126
- uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
127
 
128
  if uploaded_file:
129
- with st.spinner("📖 Analyzing book content..."):
130
- try:
131
- if uploaded_file.type == "application/pdf":
132
- text = extract_pdf_text(uploaded_file)
133
- else:
134
- text = uploaded_file.read().decode()
135
-
136
- chunks = process_text(text)
137
- st.session_state.docs = chunks
138
- st.session_state.index = build_faiss_index(chunks)
139
-
140
- with st.expander("📝 Book Summary", expanded=True):
141
- summary = generate_summary(text)
142
- st.write(summary)
143
-
144
- except Exception as e:
145
- st.error(f"Processing failed: {str(e)}")
146
-
147
- # Query interface
148
- if "index" in st.session_state and st.session_state.index is not None:
149
- query = st.text_input("Ask about the book:")
150
- if query:
151
- with st.spinner("🔍 Searching for answers..."):
152
- try:
153
- # Retrieve top 3 relevant chunks
154
- query_embed = embedder.encode([query])
155
- faiss.normalize_L2(query_embed)
156
- distances, indices = st.session_state.index.search(query_embed, k=3)
157
-
158
- context = "\n".join([st.session_state.docs[i] for i in indices[0]])
159
- answer = generate_answer(query, context)
160
-
161
- st.subheader("Answer")
162
- st.markdown(f"```\n{answer}\n```")
163
- st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
164
-
165
- except Exception as e:
166
- st.error(f"Query failed: {str(e)}")
 
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
7
  import fitz # PyMuPDF for PDF extraction
8
+ import docx2txt # For DOCX extraction
9
  from langchain_text_splitters import RecursiveCharacterTextSplitter
10
 
11
+ # ------------------------
12
  # Configuration
13
+ # ------------------------
14
  MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
15
  EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
16
  CHUNK_SIZE = 512
17
  CHUNK_OVERLAP = 64
18
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
19
 
20
+ # ------------------------
21
+ # Model Loading with Caching
22
+ # ------------------------
23
  @st.cache_resource
24
  def load_models():
25
  try:
 
26
  tokenizer = AutoTokenizer.from_pretrained(
27
  MODEL_NAME,
28
  trust_remote_code=True,
 
30
  )
31
  model = AutoModelForCausalLM.from_pretrained(
32
  MODEL_NAME,
 
 
33
  trust_remote_code=True,
34
  revision="main",
35
+ device_map="auto" if DEVICE == "cuda" else None,
36
+ torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
37
  low_cpu_mem_usage=True
38
  ).eval()
 
 
39
  embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
40
  return tokenizer, model, embedder
 
41
  except Exception as e:
42
  st.error(f"Model loading failed: {str(e)}")
43
  st.stop()
44
 
45
  tokenizer, model, embedder = load_models()
46
 
47
+ # ------------------------
48
+ # Text Processing Functions
49
+ # ------------------------
50
+ def split_text(text):
51
  splitter = RecursiveCharacterTextSplitter(
52
  chunk_size=CHUNK_SIZE,
53
  chunk_overlap=CHUNK_OVERLAP,
 
55
  )
56
  return splitter.split_text(text)
57
 
58
+ def extract_text(file):
59
+ file_type = file.type
60
+ if file_type == "application/pdf":
61
+ try:
62
+ doc = fitz.open(stream=file.read(), filetype="pdf")
63
+ return "\n".join([page.get_text() for page in doc])
64
+ except Exception as e:
65
+ st.error("Error processing PDF: " + str(e))
66
+ return ""
67
+ elif file_type == "text/plain":
68
+ return file.read().decode("utf-8")
69
+ elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
70
+ try:
71
+ return docx2txt.process(file)
72
+ except Exception as e:
73
+ st.error("Error processing DOCX: " + str(e))
74
+ return ""
75
+ else:
76
+ st.error("Unsupported file type: " + file_type)
77
  return ""
78
 
79
+ def build_index(chunks):
80
+ embeddings = embedder.encode(chunks, show_progress_bar=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  dimension = embeddings.shape[1]
82
  index = faiss.IndexFlatIP(dimension)
83
  faiss.normalize_L2(embeddings)
84
  index.add(embeddings)
85
  return index
86
 
87
+ # ------------------------
88
+ # Summarization and Q&A Functions
89
+ # ------------------------
90
+ def generate_summary(text):
91
+ # Limit input text to avoid long sequences
92
+ prompt = f"<|user|>\nSummarize the following book in a concise and informative paragraph:\n\n{text[:4000]}\n<|assistant|>\n"
93
+ inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
94
+ outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.5)
95
+ summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
96
+ return summary.split("<|assistant|>")[-1].strip() if "<|assistant|>" in summary else summary.strip()
97
+
98
  def generate_answer(query, context):
99
+ prompt = f"<|user|>\nUsing the context below, answer the following question precisely. If unsure, say 'I don't know'.\n\nContext: {context}\n\nQuestion: {query}\n<|assistant|>\n"
 
 
 
 
 
100
  inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
101
  outputs = model.generate(
102
  **inputs,
 
106
  repetition_penalty=1.2,
107
  do_sample=True
108
  )
109
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
110
+ return answer.split("<|assistant|>")[-1].strip() if "<|assistant|>" in answer else answer.strip()
111
 
112
+ # ------------------------
113
+ # Streamlit UI
114
+ # ------------------------
115
+ st.set_page_config(page_title="RAG Book Analyzer", layout="wide")
116
+ st.title("RAG-Based Book Analyzer")
117
+ st.write("Upload a book (PDF, TXT, DOCX) to get a summary and ask questions about its content.")
118
 
119
+ uploaded_file = st.file_uploader("Upload File", type=["pdf", "txt", "docx"])
 
120
 
121
  if uploaded_file:
122
+ text = extract_text(uploaded_file)
123
+ if text:
124
+ st.success("File successfully processed!")
125
+ st.write("Generating summary...")
126
+ summary = generate_summary(text)
127
+ st.markdown("### Book Summary")
128
+ st.write(summary)
129
+
130
+ # Process text into chunks and build FAISS index
131
+ chunks = split_text(text)
132
+ index = build_index(chunks)
133
+ st.session_state.chunks = chunks
134
+ st.session_state.index = index
135
+
136
+ st.markdown("### Ask a Question about the Book:")
137
+ query = st.text_input("Your Question:")
138
+ if query:
139
+ # Retrieve top 3 relevant chunks as context
140
+ query_embedding = embedder.encode([query])
141
+ faiss.normalize_L2(query_embedding)
142
+ distances, indices = index.search(query_embedding, k=3)
143
+ retrieved_chunks = [chunks[i] for i in indices[0] if i < len(chunks)]
144
+ context = "\n".join(retrieved_chunks)
145
+ answer = generate_answer(query, context)
146
+ st.markdown("### Answer")
147
+ st.write(answer)