Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,24 @@ import faiss
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import fitz # PyMuPDF for PDF extraction
|
|
|
8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
9 |
|
|
|
10 |
# Configuration
|
|
|
11 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
12 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
13 |
CHUNK_SIZE = 512
|
14 |
CHUNK_OVERLAP = 64
|
15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
|
|
|
|
|
|
17 |
@st.cache_resource
|
18 |
def load_models():
|
19 |
try:
|
20 |
-
# Load tokenizer and generative model with trust_remote_code enabled
|
21 |
tokenizer = AutoTokenizer.from_pretrained(
|
22 |
MODEL_NAME,
|
23 |
trust_remote_code=True,
|
@@ -25,25 +30,24 @@ def load_models():
|
|
25 |
)
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
MODEL_NAME,
|
28 |
-
device_map="auto" if DEVICE == "cuda" else None,
|
29 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
30 |
trust_remote_code=True,
|
31 |
revision="main",
|
|
|
|
|
32 |
low_cpu_mem_usage=True
|
33 |
).eval()
|
34 |
-
|
35 |
-
# Load embedding model for FAISS
|
36 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
37 |
return tokenizer, model, embedder
|
38 |
-
|
39 |
except Exception as e:
|
40 |
st.error(f"Model loading failed: {str(e)}")
|
41 |
st.stop()
|
42 |
|
43 |
tokenizer, model, embedder = load_models()
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
47 |
splitter = RecursiveCharacterTextSplitter(
|
48 |
chunk_size=CHUNK_SIZE,
|
49 |
chunk_overlap=CHUNK_OVERLAP,
|
@@ -51,61 +55,48 @@ def process_text(text):
|
|
51 |
)
|
52 |
return splitter.split_text(text)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
return ""
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
chunks = process_text(text)[:10] # Use first 10 chunks for summary
|
66 |
-
summaries = []
|
67 |
-
|
68 |
-
for chunk in chunks:
|
69 |
-
prompt = f"""<|user|>
|
70 |
-
Summarize this text section focusing on key themes, characters, and plot points:
|
71 |
-
{chunk[:2000]}
|
72 |
-
<|assistant|>
|
73 |
-
"""
|
74 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
75 |
-
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
|
76 |
-
summary_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
-
summaries.append(summary_text)
|
78 |
-
|
79 |
-
# Combine individual summaries into one comprehensive summary
|
80 |
-
combined = "\n".join(summaries)
|
81 |
-
final_prompt = f"""<|user|>
|
82 |
-
Combine these section summaries into a coherent book summary:
|
83 |
-
{combined}
|
84 |
-
<|assistant|>
|
85 |
-
The comprehensive summary is:"""
|
86 |
-
|
87 |
-
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
|
88 |
-
outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
|
89 |
-
full_summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
90 |
-
return full_summary.split(":")[-1].strip()
|
91 |
-
|
92 |
-
# Enhanced retrieval system using FAISS
|
93 |
-
def build_faiss_index(texts):
|
94 |
-
embeddings = embedder.encode(texts, show_progress_bar=True)
|
95 |
dimension = embeddings.shape[1]
|
96 |
index = faiss.IndexFlatIP(dimension)
|
97 |
faiss.normalize_L2(embeddings)
|
98 |
index.add(embeddings)
|
99 |
return index
|
100 |
|
101 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def generate_answer(query, context):
|
103 |
-
prompt = f"
|
104 |
-
Using this context: {context}
|
105 |
-
Answer the question precisely and truthfully. If unsure, say "I don't know".
|
106 |
-
Question: {query}
|
107 |
-
<|assistant|>
|
108 |
-
"""
|
109 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
110 |
outputs = model.generate(
|
111 |
**inputs,
|
@@ -115,52 +106,42 @@ Question: {query}
|
|
115 |
repetition_penalty=1.2,
|
116 |
do_sample=True
|
117 |
)
|
118 |
-
|
119 |
-
return
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
|
127 |
|
128 |
if uploaded_file:
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
faiss.normalize_L2(query_embed)
|
156 |
-
distances, indices = st.session_state.index.search(query_embed, k=3)
|
157 |
-
|
158 |
-
context = "\n".join([st.session_state.docs[i] for i in indices[0]])
|
159 |
-
answer = generate_answer(query, context)
|
160 |
-
|
161 |
-
st.subheader("Answer")
|
162 |
-
st.markdown(f"```\n{answer}\n```")
|
163 |
-
st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
|
164 |
-
|
165 |
-
except Exception as e:
|
166 |
-
st.error(f"Query failed: {str(e)}")
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import fitz # PyMuPDF for PDF extraction
|
8 |
+
import docx2txt # For DOCX extraction
|
9 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
|
11 |
+
# ------------------------
|
12 |
# Configuration
|
13 |
+
# ------------------------
|
14 |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
15 |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
16 |
CHUNK_SIZE = 512
|
17 |
CHUNK_OVERLAP = 64
|
18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
+
# ------------------------
|
21 |
+
# Model Loading with Caching
|
22 |
+
# ------------------------
|
23 |
@st.cache_resource
|
24 |
def load_models():
|
25 |
try:
|
|
|
26 |
tokenizer = AutoTokenizer.from_pretrained(
|
27 |
MODEL_NAME,
|
28 |
trust_remote_code=True,
|
|
|
30 |
)
|
31 |
model = AutoModelForCausalLM.from_pretrained(
|
32 |
MODEL_NAME,
|
|
|
|
|
33 |
trust_remote_code=True,
|
34 |
revision="main",
|
35 |
+
device_map="auto" if DEVICE == "cuda" else None,
|
36 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
37 |
low_cpu_mem_usage=True
|
38 |
).eval()
|
|
|
|
|
39 |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
|
40 |
return tokenizer, model, embedder
|
|
|
41 |
except Exception as e:
|
42 |
st.error(f"Model loading failed: {str(e)}")
|
43 |
st.stop()
|
44 |
|
45 |
tokenizer, model, embedder = load_models()
|
46 |
|
47 |
+
# ------------------------
|
48 |
+
# Text Processing Functions
|
49 |
+
# ------------------------
|
50 |
+
def split_text(text):
|
51 |
splitter = RecursiveCharacterTextSplitter(
|
52 |
chunk_size=CHUNK_SIZE,
|
53 |
chunk_overlap=CHUNK_OVERLAP,
|
|
|
55 |
)
|
56 |
return splitter.split_text(text)
|
57 |
|
58 |
+
def extract_text(file):
|
59 |
+
file_type = file.type
|
60 |
+
if file_type == "application/pdf":
|
61 |
+
try:
|
62 |
+
doc = fitz.open(stream=file.read(), filetype="pdf")
|
63 |
+
return "\n".join([page.get_text() for page in doc])
|
64 |
+
except Exception as e:
|
65 |
+
st.error("Error processing PDF: " + str(e))
|
66 |
+
return ""
|
67 |
+
elif file_type == "text/plain":
|
68 |
+
return file.read().decode("utf-8")
|
69 |
+
elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
70 |
+
try:
|
71 |
+
return docx2txt.process(file)
|
72 |
+
except Exception as e:
|
73 |
+
st.error("Error processing DOCX: " + str(e))
|
74 |
+
return ""
|
75 |
+
else:
|
76 |
+
st.error("Unsupported file type: " + file_type)
|
77 |
return ""
|
78 |
|
79 |
+
def build_index(chunks):
|
80 |
+
embeddings = embedder.encode(chunks, show_progress_bar=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
dimension = embeddings.shape[1]
|
82 |
index = faiss.IndexFlatIP(dimension)
|
83 |
faiss.normalize_L2(embeddings)
|
84 |
index.add(embeddings)
|
85 |
return index
|
86 |
|
87 |
+
# ------------------------
|
88 |
+
# Summarization and Q&A Functions
|
89 |
+
# ------------------------
|
90 |
+
def generate_summary(text):
|
91 |
+
# Limit input text to avoid long sequences
|
92 |
+
prompt = f"<|user|>\nSummarize the following book in a concise and informative paragraph:\n\n{text[:4000]}\n<|assistant|>\n"
|
93 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
94 |
+
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.5)
|
95 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
+
return summary.split("<|assistant|>")[-1].strip() if "<|assistant|>" in summary else summary.strip()
|
97 |
+
|
98 |
def generate_answer(query, context):
|
99 |
+
prompt = f"<|user|>\nUsing the context below, answer the following question precisely. If unsure, say 'I don't know'.\n\nContext: {context}\n\nQuestion: {query}\n<|assistant|>\n"
|
|
|
|
|
|
|
|
|
|
|
100 |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
|
101 |
outputs = model.generate(
|
102 |
**inputs,
|
|
|
106 |
repetition_penalty=1.2,
|
107 |
do_sample=True
|
108 |
)
|
109 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
110 |
+
return answer.split("<|assistant|>")[-1].strip() if "<|assistant|>" in answer else answer.strip()
|
111 |
|
112 |
+
# ------------------------
|
113 |
+
# Streamlit UI
|
114 |
+
# ------------------------
|
115 |
+
st.set_page_config(page_title="RAG Book Analyzer", layout="wide")
|
116 |
+
st.title("RAG-Based Book Analyzer")
|
117 |
+
st.write("Upload a book (PDF, TXT, DOCX) to get a summary and ask questions about its content.")
|
118 |
|
119 |
+
uploaded_file = st.file_uploader("Upload File", type=["pdf", "txt", "docx"])
|
|
|
120 |
|
121 |
if uploaded_file:
|
122 |
+
text = extract_text(uploaded_file)
|
123 |
+
if text:
|
124 |
+
st.success("File successfully processed!")
|
125 |
+
st.write("Generating summary...")
|
126 |
+
summary = generate_summary(text)
|
127 |
+
st.markdown("### Book Summary")
|
128 |
+
st.write(summary)
|
129 |
+
|
130 |
+
# Process text into chunks and build FAISS index
|
131 |
+
chunks = split_text(text)
|
132 |
+
index = build_index(chunks)
|
133 |
+
st.session_state.chunks = chunks
|
134 |
+
st.session_state.index = index
|
135 |
+
|
136 |
+
st.markdown("### Ask a Question about the Book:")
|
137 |
+
query = st.text_input("Your Question:")
|
138 |
+
if query:
|
139 |
+
# Retrieve top 3 relevant chunks as context
|
140 |
+
query_embedding = embedder.encode([query])
|
141 |
+
faiss.normalize_L2(query_embedding)
|
142 |
+
distances, indices = index.search(query_embedding, k=3)
|
143 |
+
retrieved_chunks = [chunks[i] for i in indices[0] if i < len(chunks)]
|
144 |
+
context = "\n".join(retrieved_chunks)
|
145 |
+
answer = generate_answer(query, context)
|
146 |
+
st.markdown("### Answer")
|
147 |
+
st.write(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|