Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,18 @@ import PyPDF2
|
|
9 |
# Model Setup
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_path = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
12 |
-
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
model.eval()
|
16 |
|
17 |
# Embedding Model for FAISS
|
@@ -23,14 +32,12 @@ index = faiss.IndexFlatL2(dimension)
|
|
23 |
docs = [] # Store document texts
|
24 |
summary = "" # Store book summary
|
25 |
|
26 |
-
|
27 |
# Function to extract text from PDF
|
28 |
def extract_text_from_pdf(uploaded_file):
|
29 |
reader = PyPDF2.PdfReader(uploaded_file)
|
30 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
31 |
return text
|
32 |
|
33 |
-
|
34 |
# Function to process uploaded documents and generate summary
|
35 |
def process_documents(files):
|
36 |
global docs, index, summary
|
@@ -41,7 +48,6 @@ def process_documents(files):
|
|
41 |
text = extract_text_from_pdf(file)
|
42 |
else:
|
43 |
text = file.getvalue().decode("utf-8")
|
44 |
-
|
45 |
docs.append(text)
|
46 |
|
47 |
embeddings = embedding_model.encode(docs)
|
@@ -50,22 +56,18 @@ def process_documents(files):
|
|
50 |
# Generate summary after processing documents
|
51 |
summary = generate_summary("\n".join(docs))
|
52 |
|
53 |
-
|
54 |
# Function to generate a book summary
|
55 |
def generate_summary(text):
|
56 |
chat = [
|
57 |
{"role": "system", "content": "You are a helpful AI that summarizes books."},
|
58 |
-
{"role": "user", "content": f"Summarize this book in a short paragraph:\n{text[:4000]}"} # Limiting input size
|
59 |
]
|
60 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
61 |
-
|
62 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
63 |
output = model.generate(**input_tokens, max_new_tokens=300)
|
64 |
-
|
65 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
66 |
|
67 |
-
|
68 |
-
# Function to retrieve relevant context
|
69 |
def retrieve_context(query):
|
70 |
if index.ntotal == 0:
|
71 |
return "No documents available. Please upload files first."
|
@@ -75,36 +77,30 @@ def retrieve_context(query):
|
|
75 |
|
76 |
if len(indices) == 0 or indices[0][0] >= len(docs):
|
77 |
return "No relevant context found."
|
78 |
-
|
79 |
return docs[indices[0][0]]
|
80 |
|
81 |
-
|
82 |
-
# Function to generate response using IBM Granite
|
83 |
def generate_response(query, context):
|
84 |
chat = [
|
85 |
{"role": "system", "content": "You are a helpful assistant using retrieved knowledge."},
|
86 |
{"role": "user", "content": f"Context: {context}\nQuestion: {query}\nAnswer based on context:"},
|
87 |
]
|
88 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
89 |
-
|
90 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
91 |
output = model.generate(**input_tokens, max_new_tokens=200)
|
92 |
-
|
93 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
94 |
|
95 |
-
|
96 |
# Streamlit UI
|
97 |
st.set_page_config(page_title="π AI Book Assistant", page_icon="π")
|
98 |
st.title("π AI-Powered Book Assistant")
|
99 |
st.subheader("Upload a book and get its summary or ask questions!")
|
100 |
|
101 |
-
|
102 |
|
103 |
-
if
|
104 |
with st.spinner("Processing book and generating summary..."):
|
105 |
-
process_documents([
|
106 |
st.success("Book uploaded and processed!")
|
107 |
-
|
108 |
st.markdown("### π Book Summary:")
|
109 |
st.write(summary)
|
110 |
|
|
|
9 |
# Model Setup
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_path = "ibm-granite/granite-3.1-1b-a400m-instruct"
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
|
14 |
+
# Load the model with a conditional to avoid meta tensor issues on CPU vs GPU
|
15 |
+
if device == "cpu":
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
17 |
+
else:
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_path,
|
20 |
+
device_map="auto",
|
21 |
+
low_cpu_mem_usage=True,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
)
|
24 |
model.eval()
|
25 |
|
26 |
# Embedding Model for FAISS
|
|
|
32 |
docs = [] # Store document texts
|
33 |
summary = "" # Store book summary
|
34 |
|
|
|
35 |
# Function to extract text from PDF
|
36 |
def extract_text_from_pdf(uploaded_file):
|
37 |
reader = PyPDF2.PdfReader(uploaded_file)
|
38 |
text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
39 |
return text
|
40 |
|
|
|
41 |
# Function to process uploaded documents and generate summary
|
42 |
def process_documents(files):
|
43 |
global docs, index, summary
|
|
|
48 |
text = extract_text_from_pdf(file)
|
49 |
else:
|
50 |
text = file.getvalue().decode("utf-8")
|
|
|
51 |
docs.append(text)
|
52 |
|
53 |
embeddings = embedding_model.encode(docs)
|
|
|
56 |
# Generate summary after processing documents
|
57 |
summary = generate_summary("\n".join(docs))
|
58 |
|
|
|
59 |
# Function to generate a book summary
|
60 |
def generate_summary(text):
|
61 |
chat = [
|
62 |
{"role": "system", "content": "You are a helpful AI that summarizes books."},
|
63 |
+
{"role": "user", "content": f"Summarize this book in a short paragraph:\n{text[:4000]}"} # Limiting input size for summarization
|
64 |
]
|
65 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
|
66 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
67 |
output = model.generate(**input_tokens, max_new_tokens=300)
|
|
|
68 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
69 |
|
70 |
+
# Function to retrieve relevant context using FAISS
|
|
|
71 |
def retrieve_context(query):
|
72 |
if index.ntotal == 0:
|
73 |
return "No documents available. Please upload files first."
|
|
|
77 |
|
78 |
if len(indices) == 0 or indices[0][0] >= len(docs):
|
79 |
return "No relevant context found."
|
|
|
80 |
return docs[indices[0][0]]
|
81 |
|
82 |
+
# Function to generate response using IBM Granite model
|
|
|
83 |
def generate_response(query, context):
|
84 |
chat = [
|
85 |
{"role": "system", "content": "You are a helpful assistant using retrieved knowledge."},
|
86 |
{"role": "user", "content": f"Context: {context}\nQuestion: {query}\nAnswer based on context:"},
|
87 |
]
|
88 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
|
89 |
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
|
90 |
output = model.generate(**input_tokens, max_new_tokens=200)
|
|
|
91 |
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
92 |
|
|
|
93 |
# Streamlit UI
|
94 |
st.set_page_config(page_title="π AI Book Assistant", page_icon="π")
|
95 |
st.title("π AI-Powered Book Assistant")
|
96 |
st.subheader("Upload a book and get its summary or ask questions!")
|
97 |
|
98 |
+
uploaded_file = st.file_uploader("Upload a book (PDF or TXT)", accept_multiple_files=False)
|
99 |
|
100 |
+
if uploaded_file:
|
101 |
with st.spinner("Processing book and generating summary..."):
|
102 |
+
process_documents([uploaded_file])
|
103 |
st.success("Book uploaded and processed!")
|
|
|
104 |
st.markdown("### π Book Summary:")
|
105 |
st.write(summary)
|
106 |
|