Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import numpy as np | |
import faiss | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from sentence_transformers import SentenceTransformer | |
import fitz # PyMuPDF for PDF extraction | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
# Configuration | |
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct" | |
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2" | |
CHUNK_SIZE = 512 | |
CHUNK_OVERLAP = 64 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
def load_models(): | |
try: | |
# Load tokenizer and generative model with trust_remote_code enabled | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
revision="main" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
device_map="auto" if DEVICE == "cuda" else None, | |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, | |
trust_remote_code=True, | |
revision="main", | |
low_cpu_mem_usage=True | |
).eval() | |
# Load embedding model for FAISS | |
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE) | |
return tokenizer, model, embedder | |
except Exception as e: | |
st.error(f"Model loading failed: {str(e)}") | |
st.stop() | |
tokenizer, model, embedder = load_models() | |
# Improved text processing: splits text into chunks | |
def process_text(text): | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=CHUNK_SIZE, | |
chunk_overlap=CHUNK_OVERLAP, | |
length_function=len | |
) | |
return splitter.split_text(text) | |
# Enhanced PDF extraction using PyMuPDF | |
def extract_pdf_text(uploaded_file): | |
try: | |
doc = fitz.open(stream=uploaded_file.read(), filetype="pdf") | |
return "\n".join([page.get_text() for page in doc]) | |
except Exception as e: | |
st.error(f"PDF extraction error: {str(e)}") | |
return "" | |
# Multi-step summarization | |
def generate_summary(text): | |
chunks = process_text(text)[:10] # Use first 10 chunks for summary | |
summaries = [] | |
for chunk in chunks: | |
prompt = f"""<|user|> | |
Summarize this text section focusing on key themes, characters, and plot points: | |
{chunk[:2000]} | |
<|assistant|> | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) | |
outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3) | |
summary_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
summaries.append(summary_text) | |
# Combine individual summaries into one comprehensive summary | |
combined = "\n".join(summaries) | |
final_prompt = f"""<|user|> | |
Combine these section summaries into a coherent book summary: | |
{combined} | |
<|assistant|> | |
The comprehensive summary is:""" | |
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE) | |
outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5) | |
full_summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return full_summary.split(":")[-1].strip() | |
# Enhanced retrieval system using FAISS | |
def build_faiss_index(texts): | |
embeddings = embedder.encode(texts, show_progress_bar=True) | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatIP(dimension) | |
faiss.normalize_L2(embeddings) | |
index.add(embeddings) | |
return index | |
# Context-aware answer generation | |
def generate_answer(query, context): | |
prompt = f"""<|user|> | |
Using this context: {context} | |
Answer the question precisely and truthfully. If unsure, say "I don't know". | |
Question: {query} | |
<|assistant|> | |
""" | |
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=300, | |
temperature=0.4, | |
top_p=0.9, | |
repetition_penalty=1.2, | |
do_sample=True | |
) | |
answer_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer_text.split("<|assistant|>")[-1].strip() | |
# Streamlit UI setup | |
st.set_page_config(page_title="π Smart Book Analyst", layout="wide") | |
st.title("π AI-Powered Book Analysis System") | |
# File upload | |
uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"]) | |
if uploaded_file: | |
with st.spinner("π Analyzing book content..."): | |
try: | |
if uploaded_file.type == "application/pdf": | |
text = extract_pdf_text(uploaded_file) | |
else: | |
text = uploaded_file.read().decode() | |
chunks = process_text(text) | |
st.session_state.docs = chunks | |
st.session_state.index = build_faiss_index(chunks) | |
with st.expander("π Book Summary", expanded=True): | |
summary = generate_summary(text) | |
st.write(summary) | |
except Exception as e: | |
st.error(f"Processing failed: {str(e)}") | |
# Query interface | |
if "index" in st.session_state and st.session_state.index is not None: | |
query = st.text_input("Ask about the book:") | |
if query: | |
with st.spinner("π Searching for answers..."): | |
try: | |
# Retrieve top 3 relevant chunks | |
query_embed = embedder.encode([query]) | |
faiss.normalize_L2(query_embed) | |
distances, indices = st.session_state.index.search(query_embed, k=3) | |
context = "\n".join([st.session_state.docs[i] for i in indices[0]]) | |
answer = generate_answer(query, context) | |
st.subheader("Answer") | |
st.markdown(f"```\n{answer}\n```") | |
st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0])) | |
except Exception as e: | |
st.error(f"Query failed: {str(e)}") | |