sun-tana commited on
Commit
b6d0c18
Β·
1 Parent(s): 414aff6

feat : edit process for load weight

Browse files
Files changed (1) hide show
  1. app.py +24 -1
app.py CHANGED
@@ -18,6 +18,18 @@ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base",max_length=60) #xlm
18
  transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/tiny-bert-sst2-distilled
19
  max_seq_length = 32
20
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  def create_model():
22
 
23
  inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
@@ -68,7 +80,18 @@ def create_model():
68
  output_layer7 = Dense(25, activation='softmax', name='output7')(x7)
69
  output_layer8 = Dense(61, activation='softmax', name='output8')(x8)
70
 
 
 
 
71
  model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
 
 
 
 
 
 
 
 
72
  model.load_weights("t1_m1.h5")
73
  return model
74
 
@@ -127,7 +150,7 @@ def predict(text):
127
  iface = gr.Interface(
128
  fn=predict,
129
  inputs='text',
130
- outputs='text',
131
  examples=[["Hello! My name is Omar"]]
132
  )
133
 
 
18
  transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/tiny-bert-sst2-distilled
19
  max_seq_length = 32
20
 
21
+ env_decode ={}
22
+ with open('tf_labels6.json', encoding='utf-8') as fh:
23
+ env_decode = json.load(fh)
24
+
25
+ hour_decode={}
26
+ with open('tf_labels7.json', encoding='utf-8') as fh:
27
+ hour_decode = json.load(fh)
28
+
29
+ minute_decode={}
30
+ with open('tf_labels8.json', encoding='utf-8') as fh:
31
+ minute_decode = json.load(fh)
32
+
33
  def create_model():
34
 
35
  inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
 
80
  output_layer7 = Dense(25, activation='softmax', name='output7')(x7)
81
  output_layer8 = Dense(61, activation='softmax', name='output8')(x8)
82
 
83
+ for i,layer in enumerate(transformer_model.roberta.encoder.layer[:-1]):
84
+ transformer_model.roberta.encoder.layer[i].trainable = False
85
+ # define the model #input_layer inputs
86
  model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
87
+
88
+ opt = keras.optimizers.Adam(learning_rate=3e-5)
89
+ model.compile(loss=['binary_crossentropy','binary_crossentropy','binary_crossentropy','binary_crossentropy','binary_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy'], optimizer=opt,
90
+ metrics=[
91
+ tf.keras.metrics.BinaryAccuracy(),
92
+ 'categorical_accuracy'
93
+ ])
94
+
95
  model.load_weights("t1_m1.h5")
96
  return model
97
 
 
150
  iface = gr.Interface(
151
  fn=predict,
152
  inputs='text',
153
+ outputs='label',
154
  examples=[["Hello! My name is Omar"]]
155
  )
156