File size: 6,646 Bytes
206c9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c62d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

โŒ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, AutoModelForCausalLM
print("๐Ÿ” Downloading tokenizer & model...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = AutoModelForCausalLM.from_pretrained("$MODEL_NAME")
print("โœ… Model ready.")
EOF


โŒ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐Ÿ” Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โœ… Model ready (GPTNeoForCausalLM).")
EOF


โŒ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐Ÿ” Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โœ… Model ready (GPTNeoForCausalLM).")
EOF


โŒ Error occurred at line 74: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐Ÿ” Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โœ… Model ready (GPTNeoForCausalLM).")
EOF


โŒ Error occurred at line 88: python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
print("๐Ÿ” Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = GPT2Tokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โœ… Model ready (GPTNeoForCausalLM).")
EOF


โŒ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space --space-sdks gradio

โŒ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space

โŒ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space

โŒ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space

โŒ Error occurred at line 182: huggingface-cli repo create "$HF_SPACE_NAME" --type space

โŒ Error occurred at line 216: huggingface-cli repo create "$HF_SPACE_NAME" --type space --space-sdk gradio

โŒ Error occurred at line 184: python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
import json

# Load configuration
with open("$WORK_DIR/shx-config.json", "r") as f:
    config = json.load(f)

tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"])
model = GPTNeoForCausalLM.from_pretrained(config["model_name"])
prompt = "SHX is"
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
output = model.generate(
    input_ids=inputs.input_ids,
    attention_mask=inputs.attention_mask,
    pad_token_id=tokenizer.eos_token_id,
    max_length=config["max_length"],
    temperature=config["temperature"],
    top_k=config["top_k"],
    top_p=config["top_p"]
)
print("๐Ÿง  SHX Test Output:", tokenizer.decode(output[0], skip_special_tokens=True))
EOF


โŒ Error occurred at line 168: cat <<EOF > "$WORK_DIR/README.md"
---
title: SHX-Auto GPT Space
emoji: ๐Ÿง 
colorFrom: gray
colorTo: blue
sdk: gradio
sdk_version: "3.50.2"
app_file: app.py
pinned: true
---

# ๐Ÿš€ SHX-Auto: Hyperintelligent Neural Interface

> Built on **[EleutherAI/gpt-neo-1.3](https://huggingface.co/EleutherAI/gpt-neo-1.3)**  
> Powered by โšก Gradio + Hugging Face Spaces + Quantum-AI Concepts

---

## ๐Ÿงฌ Purpose

SHX-Auto is a **self-evolving AI agent** designed to generate full-stack solutions, SaaS, and code with real-time inference using the `EleutherAI/gpt-neo-1.3` model. It is a powerful tool for quantum-native developers, enabling them to build and automate complex systems with ease.

## ๐Ÿง  Model Used

- **Model:** [`EleutherAI/gpt-neo-1.3`](https://huggingface.co/EleutherAI/gpt-neo-1.3)
- **Architecture:** Transformer Decoder
- **Training Data:** The Pile (825GB diverse dataset)
- **Use Case:** Conversational AI, Code Generation, SaaS Bootstrapping

---

## ๐ŸŽฎ How to Use

Interact with SHX below ๐Ÿ‘‡  
Type in English โ€” it auto-generates:

- โœ… Python Code
- โœ… Websites / HTML / CSS / JS
- โœ… SaaS / APIs
- โœ… AI Agent Logic

---

## โš™๏ธ Technologies

- โš›๏ธ GPT-Neo 1.3B
- ๐Ÿง  SHX Agent Core
- ๐ŸŒ€ Gradio SDK 3.50.2
- ๐Ÿ Python 3.10
- ๐ŸŒ Hugging Face Spaces

---

## ๐Ÿš€ Getting Started

### Overview

SHX-Auto is a powerful, GPT-Neo-based terminal agent designed to assist quantum-native developers in building and automating complex systems. With its advanced natural language processing capabilities, SHX-Auto can understand and execute a wide range of commands, making it an indispensable tool for developers.

### Features

- **Advanced NLP**: Utilizes the EleutherAI/gpt-neo-1.3 model for sophisticated language understanding and generation.
- **Gradio Interface**: User-friendly interface for interacting with the model.
- **Customizable Configuration**: Easily adjust model parameters such as temperature, top_k, and top_p.
- **Real-time Feedback**: Get immediate responses to your commands and see the chat history.

### Usage

1. **Initialize the Space**:
   - Clone the repository or create a new Space on Hugging Face.
   - Ensure you have the necessary dependencies installed.

2. **Run the Application**:
   - Use the Gradio interface to interact with SHX-Auto.
   - Enter your commands in the input box and click "Run" to get responses.

### Configuration

- **Model Name**: `EleutherAI/gpt-neo-1.3`
- **Max Length**: 150
- **Temperature**: 0.7
- **Top K**: 50
- **Top P**: 0.9

### Example

```python
# Example command
prompt = "Create a simple web application with a form to collect user data."
response = shx_terminal(prompt)
print(f"๐Ÿค– SHX Response: {response}")

Final Steps

    Initialize git in this folder:

    git init

    Commit your SHX files:

    git add . && git commit -m "Initial SHX commit"

    Create the Space manually (choose SDK: gradio/static/etc):

    huggingface-cli repo create SHX-Auto --type space --space-sdk gradio

    Add remote:

    git remote add origin https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto

    Push your space:

    git branch -M main && git push -u origin main

๐ŸŒ After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto

SHX interface will now be live on Hugging Face. HAPPY CODING!

For more information and support, visit our GitHub repository:
https://github.com/subatomicERROR
EOF