Spaces:
Configuration error
Configuration error
File size: 6,646 Bytes
206c9a3 a9c62d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
[91mโ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, AutoModelForCausalLM
print("๐ Downloading tokenizer & model...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = AutoModelForCausalLM.from_pretrained("$MODEL_NAME")
print("โ
Model ready.")
EOF
[0m
[91mโ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐ Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โ
Model ready (GPTNeoForCausalLM).")
EOF
[0m
[91mโ Error occurred at line 76: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐ Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โ
Model ready (GPTNeoForCausalLM).")
EOF
[0m
[91mโ Error occurred at line 74: python3 - <<EOF
from transformers import AutoTokenizer, GPTNeoForCausalLM
print("๐ Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = AutoTokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โ
Model ready (GPTNeoForCausalLM).")
EOF
[0m
[91mโ Error occurred at line 88: python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
print("๐ Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = GPT2Tokenizer.from_pretrained("$MODEL_NAME")
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("โ
Model ready (GPTNeoForCausalLM).")
EOF
[0m
[91mโ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space --space-sdks gradio[0m
[91mโ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space[0m
[91mโ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space[0m
[91mโ Error occurred at line 182: huggingface-cli repo create "$HF_USERNAME/$HF_SPACE_NAME" --type space[0m
[91mโ Error occurred at line 182: huggingface-cli repo create "$HF_SPACE_NAME" --type space[0m
[91mโ Error occurred at line 216: huggingface-cli repo create "$HF_SPACE_NAME" --type space --space-sdk gradio[0m
[91mโ Error occurred at line 184: python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
import json
# Load configuration
with open("$WORK_DIR/shx-config.json", "r") as f:
config = json.load(f)
tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"])
model = GPTNeoForCausalLM.from_pretrained(config["model_name"])
prompt = "SHX is"
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
output = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
max_length=config["max_length"],
temperature=config["temperature"],
top_k=config["top_k"],
top_p=config["top_p"]
)
print("๐ง SHX Test Output:", tokenizer.decode(output[0], skip_special_tokens=True))
EOF
[0m
[91mโ Error occurred at line 168: cat <<EOF > "$WORK_DIR/README.md"
---
title: SHX-Auto GPT Space
emoji: ๐ง
colorFrom: gray
colorTo: blue
sdk: gradio
sdk_version: "3.50.2"
app_file: app.py
pinned: true
---
# ๐ SHX-Auto: Hyperintelligent Neural Interface
> Built on **[EleutherAI/gpt-neo-1.3](https://huggingface.co/EleutherAI/gpt-neo-1.3)**
> Powered by โก Gradio + Hugging Face Spaces + Quantum-AI Concepts
---
## ๐งฌ Purpose
SHX-Auto is a **self-evolving AI agent** designed to generate full-stack solutions, SaaS, and code with real-time inference using the `EleutherAI/gpt-neo-1.3` model. It is a powerful tool for quantum-native developers, enabling them to build and automate complex systems with ease.
## ๐ง Model Used
- **Model:** [`EleutherAI/gpt-neo-1.3`](https://huggingface.co/EleutherAI/gpt-neo-1.3)
- **Architecture:** Transformer Decoder
- **Training Data:** The Pile (825GB diverse dataset)
- **Use Case:** Conversational AI, Code Generation, SaaS Bootstrapping
---
## ๐ฎ How to Use
Interact with SHX below ๐
Type in English โ it auto-generates:
- โ
Python Code
- โ
Websites / HTML / CSS / JS
- โ
SaaS / APIs
- โ
AI Agent Logic
---
## โ๏ธ Technologies
- โ๏ธ GPT-Neo 1.3B
- ๐ง SHX Agent Core
- ๐ Gradio SDK 3.50.2
- ๐ Python 3.10
- ๐ Hugging Face Spaces
---
## ๐ Getting Started
### Overview
SHX-Auto is a powerful, GPT-Neo-based terminal agent designed to assist quantum-native developers in building and automating complex systems. With its advanced natural language processing capabilities, SHX-Auto can understand and execute a wide range of commands, making it an indispensable tool for developers.
### Features
- **Advanced NLP**: Utilizes the EleutherAI/gpt-neo-1.3 model for sophisticated language understanding and generation.
- **Gradio Interface**: User-friendly interface for interacting with the model.
- **Customizable Configuration**: Easily adjust model parameters such as temperature, top_k, and top_p.
- **Real-time Feedback**: Get immediate responses to your commands and see the chat history.
### Usage
1. **Initialize the Space**:
- Clone the repository or create a new Space on Hugging Face.
- Ensure you have the necessary dependencies installed.
2. **Run the Application**:
- Use the Gradio interface to interact with SHX-Auto.
- Enter your commands in the input box and click "Run" to get responses.
### Configuration
- **Model Name**: `EleutherAI/gpt-neo-1.3`
- **Max Length**: 150
- **Temperature**: 0.7
- **Top K**: 50
- **Top P**: 0.9
### Example
```python
# Example command
prompt = "Create a simple web application with a form to collect user data."
response = shx_terminal(prompt)
print(f"๐ค SHX Response: {response}")
Final Steps
Initialize git in this folder:
git init
Commit your SHX files:
git add . && git commit -m "Initial SHX commit"
Create the Space manually (choose SDK: gradio/static/etc):
huggingface-cli repo create SHX-Auto --type space --space-sdk gradio
Add remote:
git remote add origin https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto
Push your space:
git branch -M main && git push -u origin main
๐ After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto
SHX interface will now be live on Hugging Face. HAPPY CODING!
For more information and support, visit our GitHub repository:
https://github.com/subatomicERROR
EOF
[0m
|