File size: 1,954 Bytes
206c9a3
 
 
 
 
 
 
a9c62d5
206c9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
import torch
import json
import os

# Load configuration
with open("shx-config.json", "r") as f:
    config = json.load(f)

tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"])
tokenizer.pad_token = tokenizer.eos_token
model = GPTNeoForCausalLM.from_pretrained(config["model_name"])

chat_history = []

def shx_terminal(prompt, history):
    inputs = tokenizer(prompt, return_tensors="pt", padding=True)
    input_ids = inputs.input_ids
    attention_mask = inputs.attention_mask
    pad_token_id = tokenizer.eos_token_id

    try:
        with torch.no_grad():
            output = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                pad_token_id=pad_token_id,
                max_length=config["max_length"],
                temperature=config["temperature"],
                top_k=config["top_k"],
                top_p=config["top_p"],
                do_sample=True
            )
        response = tokenizer.decode(output[0], skip_special_tokens=True)
        chat_history.append((prompt, response))
        return response, chat_history
    except Exception as e:
        return f"⚠️ SHX caught an error during generation:\n{str(e)}", chat_history

with gr.Blocks(css="body { background-color: black; color: #00FF41; font-family: monospace; }") as demo:
    gr.Markdown("## 🤖 **SHX-Auto: Multiversal System Builder**")
    with gr.Row():
        with gr.Column():
            input_box = gr.Textbox(label="Your Command")
            output_box = gr.Textbox(label="SHX Response")
            run_btn = gr.Button("Run")
            run_btn.click(shx_terminal, inputs=[input_box, gr.State(chat_history)], outputs=[output_box, gr.State(chat_history)])
        with gr.Column():
            chat_box = gr.Chatbot(label="Chat History")
            chat_box.update(chat_history)

demo.launch()