update hyper
Browse files
app.py
CHANGED
@@ -29,14 +29,15 @@ DEFAULT_K = 400
|
|
29 |
DEFAULT_WSIZE = 224
|
30 |
DEFAULT_GAMMA = 3.0
|
31 |
DEFAULT_TAU = 0.01
|
|
|
32 |
|
33 |
# Function to reset hyperparameters to default values
|
34 |
def reset_hyperparams():
|
35 |
-
return DEFAULT_WSIZE, DEFAULT_K, DEFAULT_GAMMA, DEFAULT_ALPHA, DEFAULT_SIGMA, DEFAULT_TAU
|
36 |
|
37 |
@spaces.GPU
|
38 |
def segment_image(img: PIL.Image.Image, classnames: str, use_lposs_plus: bool | None,
|
39 |
-
winodw_size:int, k:int, gamma:float, alpha:float, sigma: float, tau:float) -> tuple[np.ndarray | PIL.Image.Image | str, list[tuple[np.ndarray | tuple[int, int, int, int], str]]]:
|
40 |
img_tensor = to_torch_tensor(PIL.Image.fromarray(img)).unsqueeze(0).to(device)
|
41 |
classnames = [c.strip() for c in classnames.split(",")]
|
42 |
num_classes = len(classnames)
|
@@ -46,7 +47,7 @@ def segment_image(img: PIL.Image.Image, classnames: str, use_lposs_plus: bool |
|
|
46 |
|
47 |
preds = lposs(maskclip, dino, img_tensor, classnames, window_size=winodw_size, window_stride=stride, sigma=1/sigma, lp_k_image=k, lp_gamma=gamma, lp_alpha=alpha)
|
48 |
if use_lposs_plus:
|
49 |
-
preds = lposs_plus(img_tensor, preds, tau=tau, alpha=alpha)
|
50 |
preds = F.interpolate(preds, size=img.shape[:-1], mode="bilinear", align_corners=False)
|
51 |
preds = F.softmax(preds * 100, dim=1).cpu().numpy()
|
52 |
return (img, [(preds[0, i, :, :], classnames[i]) for i in range(num_classes)])
|
@@ -69,11 +70,12 @@ with gr.Blocks() as demo:
|
|
69 |
gr.Markdown("Hyper-parameters")
|
70 |
with gr.Row():
|
71 |
window_size = gr.Slider(minimum=112, maximum=448, value=DEFAULT_WSIZE, step=16, label="Window Size")
|
72 |
-
k = gr.Slider(minimum=50, maximum=800, value=DEFAULT_K, step=50, label="k")
|
73 |
-
gamma = gr.Slider(minimum=0.0, maximum=10.0, value=DEFAULT_GAMMA, step=0.5, label="
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
with gr.Row():
|
78 |
reset_btn = gr.Button("Reset to Default Values")
|
79 |
|
@@ -89,11 +91,11 @@ with gr.Blocks() as demo:
|
|
89 |
with gr.Row():
|
90 |
segment_btn = gr.Button("Segment Image")
|
91 |
|
92 |
-
reset_btn.click(fn=reset_hyperparams, outputs=[window_size, k, gamma, alpha, sigma, tau])
|
93 |
|
94 |
segment_btn.click(
|
95 |
fn=segment_image,
|
96 |
-
inputs=[input_image, class_names, use_lposs_plus, window_size, k, gamma, alpha, sigma, tau],
|
97 |
outputs=[output_image]
|
98 |
)
|
99 |
|
|
|
29 |
DEFAULT_WSIZE = 224
|
30 |
DEFAULT_GAMMA = 3.0
|
31 |
DEFAULT_TAU = 0.01
|
32 |
+
DEFAULT_R = 13
|
33 |
|
34 |
# Function to reset hyperparameters to default values
|
35 |
def reset_hyperparams():
|
36 |
+
return DEFAULT_WSIZE, DEFAULT_K, DEFAULT_GAMMA, DEFAULT_ALPHA, DEFAULT_SIGMA, DEFAULT_TAU, DEFAULT_R
|
37 |
|
38 |
@spaces.GPU
|
39 |
def segment_image(img: PIL.Image.Image, classnames: str, use_lposs_plus: bool | None,
|
40 |
+
winodw_size:int, k:int, gamma:float, alpha:float, sigma: float, tau:float, r:int) -> tuple[np.ndarray | PIL.Image.Image | str, list[tuple[np.ndarray | tuple[int, int, int, int], str]]]:
|
41 |
img_tensor = to_torch_tensor(PIL.Image.fromarray(img)).unsqueeze(0).to(device)
|
42 |
classnames = [c.strip() for c in classnames.split(",")]
|
43 |
num_classes = len(classnames)
|
|
|
47 |
|
48 |
preds = lposs(maskclip, dino, img_tensor, classnames, window_size=winodw_size, window_stride=stride, sigma=1/sigma, lp_k_image=k, lp_gamma=gamma, lp_alpha=alpha)
|
49 |
if use_lposs_plus:
|
50 |
+
preds = lposs_plus(img_tensor, preds, tau=tau, alpha=alpha, r=r)
|
51 |
preds = F.interpolate(preds, size=img.shape[:-1], mode="bilinear", align_corners=False)
|
52 |
preds = F.softmax(preds * 100, dim=1).cpu().numpy()
|
53 |
return (img, [(preds[0, i, :, :], classnames[i]) for i in range(num_classes)])
|
|
|
70 |
gr.Markdown("Hyper-parameters")
|
71 |
with gr.Row():
|
72 |
window_size = gr.Slider(minimum=112, maximum=448, value=DEFAULT_WSIZE, step=16, label="Window Size")
|
73 |
+
k = gr.Slider(minimum=50, maximum=800, value=DEFAULT_K, step=50, label="k (LPOSS number of graph neighbors)")
|
74 |
+
gamma = gr.Slider(minimum=0.0, maximum=10.0, value=DEFAULT_GAMMA, step=0.5, label="γ (LPOSS graph edge weight)")
|
75 |
+
sigma = gr.Slider(minimum=50, maximum=400, value=DEFAULT_SIGMA, step=10, label="σ (LPOSS spatial affinity weight)")
|
76 |
+
tau = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_TAU, step=0.01, label="τ (LPOSS+ appearance affinity weight)")
|
77 |
+
r = gr.Slider(minimum=3, maximum=15, value=DEFAULT_R, step=2, label="r (LPOSS+ kernel size)")
|
78 |
+
alpha = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_ALPHA, step=0.05, label="α (amount of propagation)")
|
79 |
with gr.Row():
|
80 |
reset_btn = gr.Button("Reset to Default Values")
|
81 |
|
|
|
91 |
with gr.Row():
|
92 |
segment_btn = gr.Button("Segment Image")
|
93 |
|
94 |
+
reset_btn.click(fn=reset_hyperparams, outputs=[window_size, k, gamma, alpha, sigma, tau, r])
|
95 |
|
96 |
segment_btn.click(
|
97 |
fn=segment_image,
|
98 |
+
inputs=[input_image, class_names, use_lposs_plus, window_size, k, gamma, alpha, sigma, tau, r],
|
99 |
outputs=[output_image]
|
100 |
)
|
101 |
|
lposs.py
CHANGED
@@ -277,13 +277,13 @@ def get_laplacian(rows, cols, data, N, alpha=0.99):
|
|
277 |
return L
|
278 |
|
279 |
|
280 |
-
def lposs_plus(img, preds, tau=0.01, alpha=0.95):
|
281 |
preds = preds[0, ...]
|
282 |
num_classes, h_img, w_img = preds.shape
|
283 |
preds = preds.permute((1, 2, 0))
|
284 |
preds = preds.reshape((h_img*w_img, -1))
|
285 |
|
286 |
-
rows, cols, pixel_pixel_data, locs = get_pixel_connections(img, neigh=
|
287 |
pixel_pixel_data = torch.sqrt(pixel_pixel_data)
|
288 |
pixel_pixel_data = torch.exp(-pixel_pixel_data / tau)
|
289 |
L = get_laplacian(rows, cols, pixel_pixel_data, preds.shape[0], alpha=alpha)
|
|
|
277 |
return L
|
278 |
|
279 |
|
280 |
+
def lposs_plus(img, preds, tau=0.01, alpha=0.95, r=13):
|
281 |
preds = preds[0, ...]
|
282 |
num_classes, h_img, w_img = preds.shape
|
283 |
preds = preds.permute((1, 2, 0))
|
284 |
preds = preds.reshape((h_img*w_img, -1))
|
285 |
|
286 |
+
rows, cols, pixel_pixel_data, locs = get_pixel_connections(img, neigh=r//2)
|
287 |
pixel_pixel_data = torch.sqrt(pixel_pixel_data)
|
288 |
pixel_pixel_data = torch.exp(-pixel_pixel_data / tau)
|
289 |
L = get_laplacian(rows, cols, pixel_pixel_data, preds.shape[0], alpha=alpha)
|