LPOSS / app.py
stojnvla's picture
fix layout
38737c2
import gradio as gr
import PIL
import numpy as np
from models.maskclip import MaskClip
from models.dino import DINO
import torchvision.transforms as T
import torch.nn.functional as F
from lposs import lposs, lposs_plus
import torch
import spaces
device = "cpu"
if torch.cuda.is_available():
print("Using GPU")
device = "cuda"
# elif torch.backends.mps.is_available():
# device = "mps"
print(f"Using device: {device}")
maskclip = MaskClip().to(device)
dino = DINO().to(device)
to_torch_tensor = T.Compose([T.Resize(size=448, max_size=2048), T.ToTensor()])
# Default hyperparameter values
DEFAULT_SIGMA = 100
DEFAULT_ALPHA = 0.95
DEFAULT_K = 400
DEFAULT_WSIZE = 224
DEFAULT_GAMMA = 3.0
DEFAULT_TAU = 0.01
DEFAULT_R = 13
# Function to reset hyperparameters to default values
def reset_hyperparams():
return DEFAULT_WSIZE, DEFAULT_K, DEFAULT_GAMMA, DEFAULT_ALPHA, DEFAULT_SIGMA, DEFAULT_TAU, DEFAULT_R
@spaces.GPU
def segment_image(img: PIL.Image.Image, classnames: str, use_lposs_plus: bool | None,
winodw_size:int, k:int, gamma:float, alpha:float, sigma: float, tau:float, r:int) -> tuple[np.ndarray | PIL.Image.Image | str, list[tuple[np.ndarray | tuple[int, int, int, int], str]]]:
img_tensor = to_torch_tensor(PIL.Image.fromarray(img)).unsqueeze(0).to(device)
classnames = [c.strip() for c in classnames.split(",")]
num_classes = len(classnames)
winodw_size = (winodw_size, winodw_size)
stride = (winodw_size[0] // 2, winodw_size[1] // 2)
preds = lposs(maskclip, dino, img_tensor, classnames, window_size=winodw_size, window_stride=stride, sigma=1/sigma, lp_k_image=k, lp_gamma=gamma, lp_alpha=alpha)
if use_lposs_plus:
preds = lposs_plus(img_tensor, preds, tau=tau, alpha=alpha, r=r)
preds = F.interpolate(preds, size=img.shape[:-1], mode="bilinear", align_corners=False)
preds = F.softmax(preds * 100, dim=1).cpu().numpy()
return (img, [(preds[0, i, :, :], classnames[i]) for i in range(num_classes)])
with gr.Blocks() as demo:
gr.Markdown("# LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation")
gr.Markdown("""<div align='center' style='margin: 1em 0;'>
<a href='http://arxiv.org/abs/2503.19777' target='_blank' style='margin-right: 2em; text-decoration: none; font-weight: bold;'>
πŸ“„ arXiv
</a>
<a href='https://github.com/vladan-stojnic/LPOSS' target='_blank' style='text-decoration: none; font-weight: bold;'>
πŸ’» GitHub
</a>
</div>""")
gr.Markdown("Upload an image and specify the objects you want to segment by listing their names separated by commas.")
with gr.Accordion("Hyper-parameters", open=False):
with gr.Column(scale=1):
# with gr.Row():
# gr.Markdown("Hyper-parameters")
with gr.Row():
window_size = gr.Slider(minimum=112, maximum=448, value=DEFAULT_WSIZE, step=16, label="Window Size")
k = gr.Slider(minimum=50, maximum=800, value=DEFAULT_K, step=50, label="k (LPOSS number of graph neighbors)")
gamma = gr.Slider(minimum=0.0, maximum=10.0, value=DEFAULT_GAMMA, step=0.5, label="Ξ³ (LPOSS graph edge tuning)")
sigma = gr.Slider(minimum=50, maximum=400, value=DEFAULT_SIGMA, step=10, label="Οƒ (LPOSS spatial affinity tuning)")
tau = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_TAU, step=0.01, label="Ο„ (LPOSS+ appearance affinity tuning)")
r = gr.Slider(minimum=3, maximum=15, value=DEFAULT_R, step=2, label="r (LPOSS+ kernel size)")
alpha = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_ALPHA, step=0.05, label="Ξ± (amount of propagation)")
with gr.Row():
reset_btn = gr.Button("Reset to Default Values")
with gr.Row():
class_names = gr.Textbox(label="Class Names", info="Separate class names with commas")
use_lposs_plus = gr.Checkbox(label="Use LPOSS+", info="Enable pixel-level refinement using LPOSS+")
with gr.Row():
segment_btn = gr.Button("Segment Image")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Input Image")
# class_names = gr.Textbox(label="Class Names", info="Separate class names with commas")
# use_lposs_plus = gr.Checkbox(label="Use LPOSS+", info="Enable pixel-level refinement using LPOSS+")
with gr.Column(scale=3):
output_image = gr.AnnotatedImage(label="Segmentation Results")
reset_btn.click(fn=reset_hyperparams, outputs=[window_size, k, gamma, alpha, sigma, tau, r])
segment_btn.click(
fn=segment_image,
inputs=[input_image, class_names, use_lposs_plus, window_size, k, gamma, alpha, sigma, tau, r],
outputs=[output_image]
)
demo.launch()