stivenDR14 commited on
Commit
dd1aad4
·
1 Parent(s): c5e1a17

update embeding model

Browse files
Files changed (2) hide show
  1. app.py +0 -1
  2. pdf_processor.py +1 -6
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
- import spaces
3
  from pdf_processor import PDFProcessor
4
  from utils import AI_MODELS, TRANSLATIONS
5
 
 
1
  import gradio as gr
 
2
  from pdf_processor import PDFProcessor
3
  from utils import AI_MODELS, TRANSLATIONS
4
 
pdf_processor.py CHANGED
@@ -1,5 +1,4 @@
1
  import json
2
- import spaces
3
  from langchain_community.document_loaders import PyPDFLoader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_ollama import OllamaEmbeddings
@@ -150,7 +149,7 @@ class PDFProcessor:
150
  max_length=2048,
151
  )
152
  embeding_model = HuggingFaceEmbeddings(
153
- model_name="ibm-granite/granite-embedding-107m-multilingual",
154
  )
155
  return current_llm, embeding_model
156
 
@@ -208,7 +207,6 @@ class PDFProcessor:
208
  else:
209
  return TRANSLATIONS[self.language]["load_pdf_first"], None
210
 
211
- @spaces.GPU
212
  def get_qa_response(self, vectorstore, message, history, ai_model, type_model, api_key, project_id_watsonx, k=4):
213
  current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
214
 
@@ -232,7 +230,6 @@ class PDFProcessor:
232
 
233
  return result["result"] + "\n\nSources: " + page_labels_text
234
 
235
- @spaces.GPU
236
  def summarizer_by_k_top_n(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, summary_prompt, just_get_documments=False):
237
  print("Summarizer by k top n in language: ", self.language)
238
  if not vectorstore:
@@ -250,7 +247,6 @@ class PDFProcessor:
250
  final_summary = summary_chain.invoke({"texts": "\n".join([doc.page_content for doc in documents]), "language": self.language})
251
  return final_summary
252
 
253
- @spaces.GPU
254
  def get_summary(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, just_get_documments=False, k=10):
255
 
256
  final_summary_prompt = PromptTemplate(
@@ -270,7 +266,6 @@ class PDFProcessor:
270
  return self.summarizer_by_k_top_n(vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, final_summary_prompt, just_get_documments)
271
 
272
 
273
- @spaces.GPU
274
  def get_specialist_opinion(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
275
  questions_prompt = PromptTemplate(
276
  input_variables=["text", "specialist_prompt", "language"],
 
1
  import json
 
2
  from langchain_community.document_loaders import PyPDFLoader
3
  from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain_ollama import OllamaEmbeddings
 
149
  max_length=2048,
150
  )
151
  embeding_model = HuggingFaceEmbeddings(
152
+ model_name="ibm-granite/granite-embedding-278m-multilingual",
153
  )
154
  return current_llm, embeding_model
155
 
 
207
  else:
208
  return TRANSLATIONS[self.language]["load_pdf_first"], None
209
 
 
210
  def get_qa_response(self, vectorstore, message, history, ai_model, type_model, api_key, project_id_watsonx, k=4):
211
  current_llm, _ = self.set_llm(ai_model, type_model, api_key, project_id_watsonx)
212
 
 
230
 
231
  return result["result"] + "\n\nSources: " + page_labels_text
232
 
 
233
  def summarizer_by_k_top_n(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, summary_prompt, just_get_documments=False):
234
  print("Summarizer by k top n in language: ", self.language)
235
  if not vectorstore:
 
247
  final_summary = summary_chain.invoke({"texts": "\n".join([doc.page_content for doc in documents]), "language": self.language})
248
  return final_summary
249
 
 
250
  def get_summary(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, just_get_documments=False, k=10):
251
 
252
  final_summary_prompt = PromptTemplate(
 
266
  return self.summarizer_by_k_top_n(vectorstore, ai_model, type_model, api_key, project_id_watsonx, k, final_summary_prompt, just_get_documments)
267
 
268
 
 
269
  def get_specialist_opinion(self, vectorstore, ai_model, type_model, api_key, project_id_watsonx, specialist_prompt):
270
  questions_prompt = PromptTemplate(
271
  input_variables=["text", "specialist_prompt", "language"],