Spaces:
Runtime error
Runtime error
Commit
Β·
2d4d9a8
1
Parent(s):
44bd370
working agent
Browse files- .gitignore +2 -1
- agent.py +156 -106
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
*.bz2
|
2 |
data
|
3 |
-
__pycache__
|
|
|
|
1 |
*.bz2
|
2 |
data
|
3 |
+
__pycache__
|
4 |
+
.env
|
agent.py
CHANGED
@@ -1,136 +1,186 @@
|
|
1 |
-
|
2 |
-
from wiki_run_engine import WikiRunEnvironment
|
3 |
from rich.console import Console
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
try:
|
8 |
-
from smolagent import Agent, AgentConfig
|
9 |
-
except ImportError:
|
10 |
-
console.print("[red]smolagent package not found. Please install with 'uv pip install smolagent'[/red]")
|
11 |
-
raise
|
12 |
|
13 |
-
class
|
14 |
-
def __init__(self, wiki_data_path,
|
15 |
-
"""Initialize agent player"""
|
16 |
self.env = WikiRunEnvironment(wiki_data_path)
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
output_parser="json"
|
22 |
-
)
|
23 |
-
self.agent = Agent(config)
|
24 |
-
|
25 |
-
def play(self, start_article=None, target_article=None, max_steps=20):
|
26 |
-
"""Play a game of Wiki Run using the LLM agent"""
|
27 |
-
# Reset environment
|
28 |
state = self.env.reset(start_article, target_article)
|
29 |
|
30 |
-
console.print("[bold]
|
31 |
-
console.print(f"Starting
|
32 |
-
console.print(f"Target
|
33 |
-
console.print()
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
console.print(f"Current article: [cyan]{state['current_article']}[/cyan]")
|
39 |
-
|
40 |
-
# Create prompt for agent
|
41 |
-
prompt = self._create_agent_prompt(state)
|
42 |
-
|
43 |
-
# Get agent's decision
|
44 |
-
tool_result = self.agent.run(
|
45 |
-
prompt,
|
46 |
-
tools=[
|
47 |
-
{
|
48 |
-
"name": "choose_next_article",
|
49 |
-
"description": "Choose the next Wikipedia article to navigate to",
|
50 |
-
"parameters": {
|
51 |
-
"type": "object",
|
52 |
-
"properties": {
|
53 |
-
"article": {
|
54 |
-
"type": "string",
|
55 |
-
"description": "The title of the next article to navigate to"
|
56 |
-
},
|
57 |
-
"reasoning": {
|
58 |
-
"type": "string",
|
59 |
-
"description": "Explanation of why this article was chosen"
|
60 |
-
}
|
61 |
-
},
|
62 |
-
"required": ["article", "reasoning"]
|
63 |
-
}
|
64 |
-
}
|
65 |
-
]
|
66 |
-
)
|
67 |
|
68 |
-
#
|
69 |
-
choice =
|
70 |
-
|
71 |
-
reasoning = choice.get("reasoning", "")
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
state, message = self.env.step(next_article)
|
79 |
-
if message:
|
80 |
-
console.print(f"[bold]{message}[/bold]")
|
81 |
-
else:
|
82 |
-
console.print("[red]Invalid choice! Agent selected an article that's not in the available links.[/red]")
|
83 |
-
# Choose a random valid link as fallback
|
84 |
-
import random
|
85 |
-
next_article = random.choice(state['available_links'])
|
86 |
-
console.print(f"[yellow]Falling back to random choice: {next_article}[/yellow]")
|
87 |
-
state, _ = self.env.step(next_article)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
return state
|
102 |
|
103 |
-
def
|
104 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
current = state['current_article']
|
106 |
target = state['target_article']
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
Current article: {current}
|
112 |
Target article: {target}
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
{', '.join(links)}
|
116 |
-
|
117 |
-
Choose the link that you think will get you closest to the target article. Consider:
|
118 |
-
1. Direct connections to the target
|
119 |
-
2. Articles that might be in the same category as the target
|
120 |
-
3. General articles that might have many links to other topics
|
121 |
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
import sys
|
128 |
|
129 |
if len(sys.argv) < 2:
|
130 |
-
console
|
|
|
131 |
console.print("Usage: python agent.py <wiki_data_path>")
|
132 |
sys.exit(1)
|
|
|
|
|
|
|
|
|
133 |
|
134 |
wiki_data_path = sys.argv[1]
|
135 |
-
agent =
|
136 |
-
agent.
|
|
|
|
1 |
+
import litellm
|
|
|
2 |
from rich.console import Console
|
3 |
+
from rich.panel import Panel
|
4 |
+
from rich.markdown import Markdown
|
5 |
+
from rich.table import Table
|
6 |
+
from rich.box import SIMPLE
|
7 |
+
from wiki_run_engine import WikiRunEnvironment
|
8 |
+
from langsmith import traceable
|
9 |
+
import os
|
10 |
+
from openai import OpenAI
|
11 |
+
from langsmith.wrappers import wrap_openai
|
12 |
|
13 |
+
openai_client = wrap_openai(OpenAI())
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
class WikiRunAgent:
|
16 |
+
def __init__(self, wiki_data_path, model="gemini/gemini-2.5-pro-exp-03-25"):
|
|
|
17 |
self.env = WikiRunEnvironment(wiki_data_path)
|
18 |
+
self.model = model
|
19 |
+
self.console = Console()
|
20 |
|
21 |
+
@traceable(name="WikiRun Game")
|
22 |
+
def run_game(self, start_article=None, target_article=None):
|
23 |
+
"""Play the WikiRun game with LLM agent"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
state = self.env.reset(start_article, target_article)
|
25 |
|
26 |
+
self.console.print(Panel(f"[bold cyan]Starting WikiRun![/bold cyan]"))
|
27 |
+
self.console.print(f"[bold green]Starting at:[/bold green] {state['current_article']}")
|
28 |
+
self.console.print(f"[bold red]Target:[/bold red] {state['target_article']}\n")
|
|
|
29 |
|
30 |
+
while not state['is_complete']:
|
31 |
+
# Display current game status
|
32 |
+
self._display_game_status(state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Get LLM's choice
|
35 |
+
choice = self._get_llm_choice(state)
|
36 |
+
self.console.print(f"\n[bold yellow]Agent chooses:[/bold yellow] {choice}")
|
|
|
37 |
|
38 |
+
# Process the choice
|
39 |
+
available_links = self._get_available_links(state['available_links'])
|
40 |
+
if not available_links:
|
41 |
+
self.console.print("[bold red]No available links to choose from![/bold red]")
|
42 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
try:
|
45 |
+
# If choice is a number
|
46 |
+
idx = int(choice) - 1
|
47 |
+
if 0 <= idx < len(available_links):
|
48 |
+
next_article = available_links[idx]
|
49 |
+
self.console.print(f"[bold cyan]Moving to:[/bold cyan] {next_article}\n")
|
50 |
+
state, message = self.env.step(next_article)
|
51 |
+
if message:
|
52 |
+
self.console.print(f"[bold]{message}[/bold]")
|
53 |
+
else:
|
54 |
+
self.console.print("[bold red]Invalid choice. Trying again.[/bold red]\n")
|
55 |
+
except ValueError:
|
56 |
+
self.console.print("[bold red]Invalid choice format. Trying again.[/bold red]\n")
|
57 |
+
|
58 |
+
self.console.print(Panel(f"[bold green]Game completed in {state['steps_taken']} steps[/bold green]"))
|
59 |
+
self.console.print(f"[bold]Path:[/bold] {' β '.join(state['path_taken'])}")
|
60 |
return state
|
61 |
|
62 |
+
def _display_game_status(self, state):
|
63 |
+
"""Display current game status with rich formatting"""
|
64 |
+
# Display current article
|
65 |
+
self.console.print(Panel(f"[bold cyan]{state['current_article']}[/bold cyan]",
|
66 |
+
expand=False,
|
67 |
+
border_style="cyan"))
|
68 |
+
|
69 |
+
# Display article links
|
70 |
+
self.console.print("[bold green]Available Links:[/bold green]")
|
71 |
+
self._display_links(state['available_links'])
|
72 |
+
|
73 |
+
# Display path so far
|
74 |
+
self.console.print(f"\n[bold yellow]Steps taken:[/bold yellow] {state['steps_taken']}")
|
75 |
+
if state['path_taken']:
|
76 |
+
self.console.print(f"[bold yellow]Path so far:[/bold yellow] {' β '.join(state['path_taken'])}")
|
77 |
+
|
78 |
+
def _display_links(self, links):
|
79 |
+
"""Display links in a nicely formatted table"""
|
80 |
+
table = Table(show_header=False, box=SIMPLE)
|
81 |
+
table.add_column("Number", style="dim")
|
82 |
+
table.add_column("Link", style="green")
|
83 |
+
table.add_column("Available", style="bold")
|
84 |
+
|
85 |
+
for i, link in enumerate(links):
|
86 |
+
# Check if link is available
|
87 |
+
is_available = link in self.env.wiki_data
|
88 |
+
status = "[green]β[/green]" if is_available else "[red]β[/red]"
|
89 |
+
color = "green" if is_available else "red"
|
90 |
+
table.add_row(
|
91 |
+
f"{i+1}",
|
92 |
+
f"[{color}]{link}[/{color}]",
|
93 |
+
status
|
94 |
+
)
|
95 |
+
|
96 |
+
self.console.print(table)
|
97 |
+
|
98 |
+
def _get_available_links(self, links):
|
99 |
+
"""Filter links to only those available in the wiki data"""
|
100 |
+
return [link for link in links if link in self.env.wiki_data]
|
101 |
+
|
102 |
+
@traceable(name="LLM Decision")
|
103 |
+
def _get_llm_choice(self, state):
|
104 |
+
"""Ask LLM for next move"""
|
105 |
current = state['current_article']
|
106 |
target = state['target_article']
|
107 |
+
all_links = state['available_links']
|
108 |
+
available_links = self._get_available_links(all_links)
|
109 |
+
path_so_far = state['path_taken']
|
110 |
|
111 |
+
# Create prompt with relevant context (not the full article)
|
112 |
+
prompt = f"""You are playing WikiRun, trying to navigate from one Wikipedia article to another using only links.
|
113 |
Current article: {current}
|
114 |
Target article: {target}
|
115 |
+
Available links (numbered):
|
116 |
+
{self._format_links(available_links)}
|
117 |
|
118 |
+
Your path so far: {' -> '.join(path_so_far)}
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
Think about which link is most likely to lead you toward the target article.
|
121 |
+
First, think step by step about your strategy.
|
122 |
+
Then output your choice as a number in this format: <choice>N</choice> where N is the link number.
|
123 |
+
"""
|
124 |
|
125 |
+
# Call LLM via litellm with langsmith tracing
|
126 |
+
response = litellm.completion(
|
127 |
+
model=self.model,
|
128 |
+
messages=[{"role": "user", "content": prompt}],
|
129 |
+
# metadata={
|
130 |
+
# "current_article": current,
|
131 |
+
# "target_article": target,
|
132 |
+
# "available_links": available_links,
|
133 |
+
# "steps_taken": state['steps_taken'],
|
134 |
+
# "path_so_far": path_so_far
|
135 |
+
# }
|
136 |
+
)
|
137 |
+
|
138 |
+
# Extract the choice from response
|
139 |
+
content = response.choices[0].message.content
|
140 |
+
self.console.print(Panel(Markdown(content), title="[bold]Agent Thinking[/bold]", border_style="yellow"))
|
141 |
+
|
142 |
+
# Extract choice using format <choice>N</choice>
|
143 |
+
import re
|
144 |
+
choice_match = re.search(r'<choice>(\d+)</choice>', content)
|
145 |
+
if choice_match:
|
146 |
+
return choice_match.group(1)
|
147 |
+
else:
|
148 |
+
# Fallback: try to find any number in the response
|
149 |
+
numbers = re.findall(r'\d+', content)
|
150 |
+
if numbers:
|
151 |
+
for num in numbers:
|
152 |
+
if 1 <= int(num) <= len(available_links):
|
153 |
+
return num
|
154 |
+
# Default to first link if no valid choice found
|
155 |
+
return "1" if available_links else "0"
|
156 |
+
|
157 |
+
def _format_links(self, links):
|
158 |
+
"""Format the list of links for the prompt"""
|
159 |
+
return "\n".join([f"{i+1}. {link}" for i, link in enumerate(links)])
|
160 |
+
|
161 |
+
def setup_langsmith():
|
162 |
+
"""Print instructions for setting up LangSmith tracing"""
|
163 |
+
console = Console()
|
164 |
+
console.print(Panel("[bold yellow]LangSmith Setup Instructions[/bold yellow]"))
|
165 |
+
console.print("To enable LangSmith tracing, set the following environment variables:")
|
166 |
+
console.print("[bold]export LANGSMITH_API_KEY='your-api-key'[/bold]")
|
167 |
+
console.print("Get your API key from: https://smith.langchain.com/settings")
|
168 |
+
console.print("Once set, your WikiRun agent will log traces to your LangSmith dashboard")
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
import sys
|
172 |
|
173 |
if len(sys.argv) < 2:
|
174 |
+
console = Console()
|
175 |
+
console.print("[bold red]Please provide the path to Wikipedia data[/bold red]")
|
176 |
console.print("Usage: python agent.py <wiki_data_path>")
|
177 |
sys.exit(1)
|
178 |
+
|
179 |
+
# Remind about LangSmith setup
|
180 |
+
if not os.environ.get("LANGSMITH_API_KEY"):
|
181 |
+
setup_langsmith()
|
182 |
|
183 |
wiki_data_path = sys.argv[1]
|
184 |
+
agent = WikiRunAgent(wiki_data_path)
|
185 |
+
agent.run_game(start_article="Peanut", target_article="Silicon Valley")
|
186 |
+
# agent.run_game(start_article="Silicon Valley", target_article="Peanut")
|