import math from dataclasses import dataclass import numpy as np import torch from torch import Tensor, nn from .connector_edit import Qwen2Connector from .layers import DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock @dataclass class Step1XParams: in_channels: int out_channels: int vec_in_dim: int context_in_dim: int hidden_size: int mlp_ratio: float num_heads: int depth: int depth_single_blocks: int axes_dim: list[int] theta: int qkv_bias: bool class Step1XEdit(nn.Module): """ Transformer model for flow matching on sequences. """ def __init__(self, params: Step1XParams): super().__init__() self.params = params self.in_channels = params.in_channels self.out_channels = params.out_channels if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" ) pe_dim = params.hidden_size // params.num_heads if sum(params.axes_dim) != pe_dim: raise ValueError( f"Got {params.axes_dim} but expected positional dim {pe_dim}" ) self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND( dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim ) self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, ) for _ in range(params.depth) ] ) self.single_blocks = nn.ModuleList( [ SingleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio ) for _ in range(params.depth_single_blocks) ] ) self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) self.connector = Qwen2Connector() @staticmethod def timestep_embedding( t: Tensor, dim, max_period=10000, time_factor: float = 1000.0 ): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding def forward( self, img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, timesteps: Tensor, y: Tensor, ) -> Tensor: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") img = self.img_in(img) vec = self.time_in(self.timestep_embedding(timesteps, 256)) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) for block in self.double_blocks: img, txt = block(img=img, txt=txt, vec=vec, pe=pe) img = torch.cat((txt, img), 1) for block in self.single_blocks: img = block(img, vec=vec, pe=pe) img = img[:, txt.shape[1] :, ...] img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) return img