Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
import torch.nn | |
from einops import rearrange | |
from torch import nn | |
from .layers import MLP, TextProjection, TimestepEmbedder, apply_gate, attention | |
class RMSNorm(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
elementwise_affine=True, | |
eps: float = 1e-6, | |
device=None, | |
dtype=None, | |
): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.eps = eps | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
if hasattr(self, "weight"): | |
output = output * self.weight | |
return output | |
def get_norm_layer(norm_layer): | |
""" | |
Get the normalization layer. | |
Args: | |
norm_layer (str): The type of normalization layer. | |
Returns: | |
norm_layer (nn.Module): The normalization layer. | |
""" | |
if norm_layer == "layer": | |
return nn.LayerNorm | |
elif norm_layer == "rms": | |
return RMSNorm | |
else: | |
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented") | |
def get_activation_layer(act_type): | |
"""get activation layer | |
Args: | |
act_type (str): the activation type | |
Returns: | |
torch.nn.functional: the activation layer | |
""" | |
if act_type == "gelu": | |
return lambda: nn.GELU() | |
elif act_type == "gelu_tanh": | |
return lambda: nn.GELU(approximate="tanh") | |
elif act_type == "relu": | |
return nn.ReLU | |
elif act_type == "silu": | |
return nn.SiLU | |
else: | |
raise ValueError(f"Unknown activation type: {act_type}") | |
class IndividualTokenRefinerBlock(torch.nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
heads_num, | |
mlp_width_ratio: str = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
need_CA: bool = False, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.need_CA = need_CA | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
self.self_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.self_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
act_layer = get_activation_layer(act_type) | |
self.mlp = MLP( | |
in_channels=hidden_size, | |
hidden_channels=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=mlp_drop_rate, | |
**factory_kwargs, | |
) | |
self.adaLN_modulation = nn.Sequential( | |
act_layer(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs), | |
) | |
if self.need_CA: | |
self.cross_attnblock=CrossAttnBlock(hidden_size=hidden_size, | |
heads_num=heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
act_type=act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
**factory_kwargs,) | |
# Zero-initialize the modulation | |
nn.init.zeros_(self.adaLN_modulation[1].weight) | |
nn.init.zeros_(self.adaLN_modulation[1].bias) | |
def forward( | |
self, | |
x: torch.Tensor, | |
c: torch.Tensor, # timestep_aware_representations + context_aware_representations | |
attn_mask: torch.Tensor = None, | |
y: torch.Tensor = None, | |
): | |
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) | |
norm_x = self.norm1(x) | |
qkv = self.self_attn_qkv(norm_x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) | |
# Apply QK-Norm if needed | |
q = self.self_attn_q_norm(q).to(v) | |
k = self.self_attn_k_norm(k).to(v) | |
# Self-Attention | |
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask) | |
x = x + apply_gate(self.self_attn_proj(attn), gate_msa) | |
if self.need_CA: | |
x = self.cross_attnblock(x, c, attn_mask, y) | |
# FFN Layer | |
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp) | |
return x | |
class CrossAttnBlock(torch.nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
heads_num, | |
mlp_width_ratio: str = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
self.norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
self.norm1_2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
self.self_attn_q = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.self_attn_kv = nn.Linear( | |
hidden_size, hidden_size*2, bias=qkv_bias, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.self_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
act_layer = get_activation_layer(act_type) | |
self.adaLN_modulation = nn.Sequential( | |
act_layer(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs), | |
) | |
# Zero-initialize the modulation | |
nn.init.zeros_(self.adaLN_modulation[1].weight) | |
nn.init.zeros_(self.adaLN_modulation[1].bias) | |
def forward( | |
self, | |
x: torch.Tensor, | |
c: torch.Tensor, # timestep_aware_representations + context_aware_representations | |
attn_mask: torch.Tensor = None, | |
y: torch.Tensor=None, | |
): | |
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) | |
norm_x = self.norm1(x) | |
norm_y = self.norm1_2(y) | |
q = self.self_attn_q(norm_x) | |
q = rearrange(q, "B L (H D) -> B L H D", H=self.heads_num) | |
kv = self.self_attn_kv(norm_y) | |
k, v = rearrange(kv, "B L (K H D) -> K B L H D", K=2, H=self.heads_num) | |
# Apply QK-Norm if needed | |
q = self.self_attn_q_norm(q).to(v) | |
k = self.self_attn_k_norm(k).to(v) | |
# Self-Attention | |
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask) | |
x = x + apply_gate(self.self_attn_proj(attn), gate_msa) | |
return x | |
class IndividualTokenRefiner(torch.nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
heads_num, | |
depth, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
need_CA:bool=False, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.need_CA = need_CA | |
self.blocks = nn.ModuleList( | |
[ | |
IndividualTokenRefinerBlock( | |
hidden_size=hidden_size, | |
heads_num=heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
act_type=act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
need_CA=self.need_CA, | |
**factory_kwargs, | |
) | |
for _ in range(depth) | |
] | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
c: torch.LongTensor, | |
mask: Optional[torch.Tensor] = None, | |
y:torch.Tensor=None, | |
): | |
self_attn_mask = None | |
if mask is not None: | |
batch_size = mask.shape[0] | |
seq_len = mask.shape[1] | |
mask = mask.to(x.device) | |
# batch_size x 1 x seq_len x seq_len | |
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat( | |
1, 1, seq_len, 1 | |
) | |
# batch_size x 1 x seq_len x seq_len | |
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) | |
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num | |
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() | |
# avoids self-attention weight being NaN for padding tokens | |
self_attn_mask[:, :, :, 0] = True | |
for block in self.blocks: | |
x = block(x, c, self_attn_mask,y) | |
return x | |
class SingleTokenRefiner(torch.nn.Module): | |
""" | |
A single token refiner block for llm text embedding refine. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
heads_num, | |
depth, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
need_CA:bool=False, | |
attn_mode: str = "torch", | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.attn_mode = attn_mode | |
self.need_CA = need_CA | |
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner." | |
self.input_embedder = nn.Linear( | |
in_channels, hidden_size, bias=True, **factory_kwargs | |
) | |
if self.need_CA: | |
self.input_embedder_CA = nn.Linear( | |
in_channels, hidden_size, bias=True, **factory_kwargs | |
) | |
act_layer = get_activation_layer(act_type) | |
# Build timestep embedding layer | |
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs) | |
# Build context embedding layer | |
self.c_embedder = TextProjection( | |
in_channels, hidden_size, act_layer, **factory_kwargs | |
) | |
self.individual_token_refiner = IndividualTokenRefiner( | |
hidden_size=hidden_size, | |
heads_num=heads_num, | |
depth=depth, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
act_type=act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
need_CA=need_CA, | |
**factory_kwargs, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.LongTensor, | |
mask: Optional[torch.LongTensor] = None, | |
y: torch.LongTensor=None, | |
): | |
timestep_aware_representations = self.t_embedder(t) | |
if mask is None: | |
context_aware_representations = x.mean(dim=1) | |
else: | |
mask_float = mask.unsqueeze(-1) # [b, s1, 1] | |
context_aware_representations = (x * mask_float).sum( | |
dim=1 | |
) / mask_float.sum(dim=1) | |
context_aware_representations = self.c_embedder(context_aware_representations) | |
c = timestep_aware_representations + context_aware_representations | |
x = self.input_embedder(x) | |
if self.need_CA: | |
y = self.input_embedder_CA(y) | |
x = self.individual_token_refiner(x, c, mask, y) | |
else: | |
x = self.individual_token_refiner(x, c, mask) | |
return x | |
class Qwen2Connector(torch.nn.Module): | |
def __init__( | |
self, | |
# biclip_dim=1024, | |
in_channels=3584, | |
hidden_size=4096, | |
heads_num=32, | |
depth=2, | |
need_CA=False, | |
device=None, | |
dtype=torch.bfloat16, | |
): | |
super().__init__() | |
factory_kwargs = {"device": device, "dtype":dtype} | |
self.S =SingleTokenRefiner(in_channels=in_channels,hidden_size=hidden_size,heads_num=heads_num,depth=depth,need_CA=need_CA,**factory_kwargs) | |
self.global_proj_out=nn.Linear(in_channels,768) | |
self.scale_factor = nn.Parameter(torch.zeros(1)) | |
with torch.no_grad(): | |
self.scale_factor.data += -(1 - 0.09) | |
def forward(self, x,t,mask): | |
mask_float = mask.unsqueeze(-1) # [b, s1, 1] | |
x_mean = (x * mask_float).sum( | |
dim=1 | |
) / mask_float.sum(dim=1) * (1 + self.scale_factor) | |
global_out=self.global_proj_out(x_mean) | |
encoder_hidden_states = self.S(x,t,mask) | |
return encoder_hidden_states,global_out |