Step1X-Edit / modules /attention.py
listen2you003's picture
init commit
36de41f
import math
import torch
import torch.nn.functional as F
try:
import flash_attn
from flash_attn.flash_attn_interface import (
_flash_attn_forward,
flash_attn_func,
flash_attn_varlen_func,
)
except ImportError:
flash_attn = None
flash_attn_varlen_func = None
_flash_attn_forward = None
flash_attn_func = None
MEMORY_LAYOUT = {
# flash模式:
# 预处理: 输入 [batch_size, seq_len, num_heads, head_dim]
# 后处理: 保持形状不变
"flash": (
lambda x: x, # 保持形状
lambda x: x, # 保持形状
),
# torch/vanilla模式:
# 预处理: 交换序列和注意力头的维度 [B,S,A,D] -> [B,A,S,D]
# 后处理: 交换回原始维度 [B,A,S,D] -> [B,S,A,D]
"torch": (
lambda x: x.transpose(1, 2), # (B,S,A,D) -> (B,A,S,D)
lambda x: x.transpose(1, 2), # (B,A,S,D) -> (B,S,A,D)
),
"vanilla": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
}
def attention(
q,
k,
v,
mode="torch",
drop_rate=0,
attn_mask=None,
causal=False,
):
"""
执行QKV自注意力计算
Args:
q (torch.Tensor): 查询张量,形状 [batch_size, seq_len, num_heads, head_dim]
k (torch.Tensor): 键张量,形状 [batch_size, seq_len_kv, num_heads, head_dim]
v (torch.Tensor): 值张量,形状 [batch_size, seq_len_kv, num_heads, head_dim]
mode (str): 注意力模式,可选 'flash', 'torch', 'vanilla'
drop_rate (float): 注意力矩阵的dropout概率
attn_mask (torch.Tensor): 注意力掩码,形状根据模式不同而变化
causal (bool): 是否使用因果注意力(仅关注前面位置)
Returns:
torch.Tensor: 注意力输出,形状 [batch_size, seq_len, num_heads * head_dim]
"""
# 获取预处理和后处理函数
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
# 应用预处理变换
q = pre_attn_layout(q) # 形状根据模式变化
k = pre_attn_layout(k)
v = pre_attn_layout(v)
if mode == "torch":
# 使用PyTorch原生的scaled_dot_product_attention
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
elif mode == "flash":
assert flash_attn_func is not None, "flash_attn_func未定义"
assert attn_mask is None, "不支持的注意力掩码"
x: torch.Tensor = flash_attn_func(
q, k, v, dropout_p=drop_rate, causal=causal, softmax_scale=None
) # type: ignore
elif mode == "vanilla":
# 手动实现注意力机制
scale_factor = 1 / math.sqrt(q.size(-1)) # 缩放因子 1/sqrt(d_k)
b, a, s, _ = q.shape # 获取形状参数
s1 = k.size(2) # 键值序列长度
# 初始化注意力偏置
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
# 处理因果掩码
if causal:
assert attn_mask is None, "因果掩码和注意力掩码不能同时使用"
# 生成下三角因果掩码
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(
diagonal=0
)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias = attn_bias.to(q.dtype)
# 处理自定义注意力掩码
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask # 允许类似ALiBi的位置偏置
# 计算注意力矩阵
attn = (q @ k.transpose(-2, -1)) * scale_factor # [B,A,S,S1]
attn += attn_bias
# softmax和dropout
attn = attn.softmax(dim=-1)
attn = torch.dropout(attn, p=drop_rate, train=True)
# 计算输出
x = attn @ v # [B,A,S,D]
else:
raise NotImplementedError(f"不支持的注意力模式: {mode}")
# 应用后处理变换
x = post_attn_layout(x) # 恢复原始维度顺序
# 合并注意力头维度
b, s, a, d = x.shape
out = x.reshape(b, s, -1) # [B,S,A*D]
return out