Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,862 Bytes
36de41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
)
from torchvision.transforms import ToPILImage
to_pil = ToPILImage()
Qwen25VL_7b_PREFIX = '''Given a user prompt, generate an "Enhanced prompt" that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:
- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.
- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.\n
Here are examples of how to transform or refine prompts:
- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.
- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.\n
Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:
User Prompt:'''
def split_string(s):
# 将中文引号替换为英文引号
s = s.replace("“", '"').replace("”", '"') # use english quotes
result = []
# 标记是否在引号内
in_quotes = False
temp = ""
# 遍历字符串中的每个字符及其索引
for idx, char in enumerate(s):
# 如果字符是引号且索引大于 155
if char == '"' and idx > 155:
# 将引号添加到临时字符串
temp += char
# 如果不在引号内
if not in_quotes:
# 将临时字符串添加到结果列表
result.append(temp)
# 清空临时字符串
temp = ""
# 切换引号状态
in_quotes = not in_quotes
continue
# 如果在引号内
if in_quotes:
# 如果字符是空格
if char.isspace():
pass # have space token
# 将字符用中文引号包裹后添加到结果列表
result.append("“" + char + "”")
else:
# 将字符添加到临时字符串
temp += char
# 如果临时字符串不为空
if temp:
# 将临时字符串添加到结果列表
result.append(temp)
return result
class Qwen25VL_7b_Embedder(torch.nn.Module):
def __init__(self, model_path, max_length=640, dtype=torch.bfloat16, device="cuda"):
super(Qwen25VL_7b_Embedder, self).__init__()
self.max_length = max_length
self.dtype = dtype
self.device = device
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=dtype,
attn_implementation="eager",
).to(torch.cuda.current_device())
self.model.requires_grad_(False)
self.processor = AutoProcessor.from_pretrained(
model_path, min_pixels=256 * 28 * 28, max_pixels=324 * 28 * 28
)
self.prefix = Qwen25VL_7b_PREFIX
def forward(self, caption, ref_images):
text_list = caption
embs = torch.zeros(
len(text_list),
self.max_length,
self.model.config.hidden_size,
dtype=torch.bfloat16,
device=torch.cuda.current_device(),
)
hidden_states = torch.zeros(
len(text_list),
self.max_length,
self.model.config.hidden_size,
dtype=torch.bfloat16,
device=torch.cuda.current_device(),
)
masks = torch.zeros(
len(text_list),
self.max_length,
dtype=torch.long,
device=torch.cuda.current_device(),
)
input_ids_list = []
attention_mask_list = []
emb_list = []
def split_string(s):
s = s.replace("“", '"').replace("”", '"').replace("'", '''"''') # use english quotes
result = []
in_quotes = False
temp = ""
for idx,char in enumerate(s):
if char == '"' and idx>155:
temp += char
if not in_quotes:
result.append(temp)
temp = ""
in_quotes = not in_quotes
continue
if in_quotes:
if char.isspace():
pass # have space token
result.append("“" + char + "”")
else:
temp += char
if temp:
result.append(temp)
return result
for idx, (txt, imgs) in enumerate(zip(text_list, ref_images)):
messages = [{"role": "user", "content": []}]
messages[0]["content"].append({"type": "text", "text": f"{self.prefix}"})
messages[0]["content"].append({"type": "image", "image": to_pil(imgs)})
# 再添加 text
messages[0]["content"].append({"type": "text", "text": f"{txt}"})
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True, add_vision_id=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
)
old_inputs_ids = inputs.input_ids
text_split_list = split_string(text)
token_list = []
for text_each in text_split_list:
txt_inputs = self.processor(
text=text_each,
images=None,
videos=None,
padding=True,
return_tensors="pt",
)
token_each = txt_inputs.input_ids
if token_each[0][0] == 2073 and token_each[0][-1] == 854:
token_each = token_each[:, 1:-1]
token_list.append(token_each)
else:
token_list.append(token_each)
new_txt_ids = torch.cat(token_list, dim=1).to("cuda")
new_txt_ids = new_txt_ids.to(old_inputs_ids.device)
idx1 = (old_inputs_ids == 151653).nonzero(as_tuple=True)[1][0]
idx2 = (new_txt_ids == 151653).nonzero(as_tuple=True)[1][0]
inputs.input_ids = (
torch.cat([old_inputs_ids[0, :idx1], new_txt_ids[0, idx2:]], dim=0)
.unsqueeze(0)
.to("cuda")
)
inputs.attention_mask = (inputs.input_ids > 0).long().to("cuda")
outputs = self.model(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
pixel_values=inputs.pixel_values.to("cuda"),
image_grid_thw=inputs.image_grid_thw.to("cuda"),
output_hidden_states=True,
)
emb = outputs["hidden_states"][-1]
embs[idx, : min(self.max_length, emb.shape[1] - 217)] = emb[0, 217:][
: self.max_length
]
masks[idx, : min(self.max_length, emb.shape[1] - 217)] = torch.ones(
(min(self.max_length, emb.shape[1] - 217)),
dtype=torch.long,
device=torch.cuda.current_device(),
)
return embs, masks |