Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,664 Bytes
36de41f abd3b00 36de41f b812142 d2c3bde 36de41f 723b769 36de41f d2c3bde 36de41f b812142 d2c3bde 36de41f d2c3bde 36de41f 2d5a2f2 36de41f 6b3d669 abd3b00 6b3d669 2d5a2f2 6b3d669 95a8692 6b3d669 abd3b00 6b3d669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import argparse
import datetime
import json
import itertools
import math
import os
import spaces
import time
from pathlib import Path
import gradio as gr
import numpy as np
import torch
from einops import rearrange, repeat
from huggingface_hub import snapshot_download
from PIL import Image, ImageOps
from safetensors.torch import load_file
from torchvision.transforms import functional as F
from tqdm import tqdm
import sampling
from modules.autoencoder import AutoEncoder
from modules.conditioner import Qwen25VL_7b_Embedder as Qwen2VLEmbedder
from modules.model_edit import Step1XParams, Step1XEdit
print("TORCH_CUDA", torch.cuda.is_available())
examples = [
["examples 2/meme.jpg", "turn into an illustration in studio ghibli style",("examples 2/meme.jpg","examples 2/ghibli_meme.jpg"),],
["examples 2/celeb_meme.jpg", "replace the gray blazer with a leather jacket",("examples 2/celeb_meme.jpg","examples 2/leather.jpg")],
["examples 2/cookie.png", "remove the cookie",("examples 2/cookie.png","examples 2/no_cookie.png")],
["examples 2/poster_orig.jpg", "replace 'lambs' with 'llamas'",("examples 2/poster_orig.jpg","examples 2/poster.jpg")],
]
def generate_examples(init_image, output_image, prompt):
return init_image, output_image, prompt
def load_state_dict(model, ckpt_path, device="cuda", strict=False, assign=True):
if Path(ckpt_path).suffix == ".safetensors":
state_dict = load_file(ckpt_path, device)
else:
state_dict = torch.load(ckpt_path, map_location="cpu")
missing, unexpected = model.load_state_dict(
state_dict, strict=strict, assign=assign
)
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
return model
def load_models(
dit_path=None,
ae_path=None,
qwen2vl_model_path=None,
device="cuda",
max_length=256,
dtype=torch.bfloat16,
):
qwen2vl_encoder = Qwen2VLEmbedder(
qwen2vl_model_path,
device=device,
max_length=max_length,
dtype=dtype,
)
with torch.device("meta"):
ae = AutoEncoder(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
)
step1x_params = Step1XParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
)
dit = Step1XEdit(step1x_params)
ae = load_state_dict(ae, ae_path)
dit = load_state_dict(
dit, dit_path
)
dit = dit.to(device=device, dtype=dtype)
ae = ae.to(device=device, dtype=torch.float32)
return ae, dit, qwen2vl_encoder
class ImageGenerator:
def __init__(
self,
dit_path=None,
ae_path=None,
qwen2vl_model_path=None,
device="cuda",
max_length=640,
dtype=torch.bfloat16,
) -> None:
self.device = torch.device(device)
self.ae, self.dit, self.llm_encoder = load_models(
dit_path=dit_path,
ae_path=ae_path,
qwen2vl_model_path=qwen2vl_model_path,
max_length=max_length,
dtype=dtype,
)
self.ae = self.ae.to(device=self.device, dtype=torch.float32)
self.dit = self.dit.to(device=self.device, dtype=dtype)
self.llm_encoder = self.llm_encoder.to(device=self.device, dtype=dtype)
def to_cuda(self):
self.ae.to(device='cuda', dtype=torch.float32)
self.dit.to(device='cuda', dtype=torch.bfloat16)
self.llm_encoder.to(device='cuda', dtype=torch.bfloat16)
def prepare(self, prompt, img, ref_image, ref_image_raw):
bs, _, h, w = img.shape
bs, _, ref_h, ref_w = ref_image.shape
assert h == ref_h and w == ref_w
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
elif bs >= 1 and isinstance(prompt, str):
prompt = [prompt] * bs
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
ref_img = rearrange(ref_image, "b c (ref_h ph) (ref_w pw) -> b (ref_h ref_w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
ref_img_ids = torch.zeros(ref_h // 2, ref_w // 2, 3)
ref_img_ids[..., 1] = ref_img_ids[..., 1] + torch.arange(ref_h // 2)[:, None]
ref_img_ids[..., 2] = ref_img_ids[..., 2] + torch.arange(ref_w // 2)[None, :]
ref_img_ids = repeat(ref_img_ids, "ref_h ref_w c -> b (ref_h ref_w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt, mask = self.llm_encoder(prompt, ref_image_raw)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
img = torch.cat([img, ref_img.to(device=img.device, dtype=img.dtype)], dim=-2)
img_ids = torch.cat([img_ids, ref_img_ids], dim=-2)
return {
"img": img,
"mask": mask,
"img_ids": img_ids.to(img.device),
"llm_embedding": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
}
@staticmethod
def process_diff_norm(diff_norm, k):
pow_result = torch.pow(diff_norm, k)
result = torch.where(
diff_norm > 1.0,
pow_result,
torch.where(diff_norm < 1.0, torch.ones_like(diff_norm), diff_norm),
)
return result
def denoise(
self,
img: torch.Tensor,
img_ids: torch.Tensor,
llm_embedding: torch.Tensor,
txt_ids: torch.Tensor,
timesteps: list[float],
cfg_guidance: float = 4.5,
mask=None,
show_progress=False,
timesteps_truncate=1.0,
):
if show_progress:
pbar = tqdm(itertools.pairwise(timesteps), desc='denoising...')
else:
pbar = itertools.pairwise(timesteps)
for t_curr, t_prev in pbar:
if img.shape[0] == 1 and cfg_guidance != -1:
img = torch.cat([img, img], dim=0)
t_vec = torch.full(
(img.shape[0],), t_curr, dtype=img.dtype, device=img.device
)
txt, vec = self.dit.connector(llm_embedding, t_vec, mask)
pred = self.dit(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
)
if cfg_guidance != -1:
cond, uncond = (
pred[0 : pred.shape[0] // 2, :],
pred[pred.shape[0] // 2 :, :],
)
if t_curr > timesteps_truncate:
diff = cond - uncond
diff_norm = torch.norm(diff, dim=(2), keepdim=True)
pred = uncond + cfg_guidance * (
cond - uncond
) / self.process_diff_norm(diff_norm, k=0.4)
else:
pred = uncond + cfg_guidance * (cond - uncond)
tem_img = img[0 : img.shape[0] // 2, :] + (t_prev - t_curr) * pred
img_input_length = img.shape[1] // 2
img = torch.cat(
[
tem_img[:, :img_input_length],
img[ : img.shape[0] // 2, img_input_length:],
], dim=1
)
return img[:, :img.shape[1] // 2]
@staticmethod
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
@staticmethod
def load_image(image):
from PIL import Image
if isinstance(image, np.ndarray):
image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0
image = image.unsqueeze(0)
return image
elif isinstance(image, Image.Image):
image = F.to_tensor(image.convert("RGB"))
image = image.unsqueeze(0)
return image
elif isinstance(image, torch.Tensor):
return image
elif isinstance(image, str):
image = F.to_tensor(Image.open(image).convert("RGB"))
image = image.unsqueeze(0)
return image
else:
raise ValueError(f"Unsupported image type: {type(image)}")
def output_process_image(self, resize_img, image_size):
res_image = resize_img.resize(image_size)
return res_image
def input_process_image(self, img, img_size=512):
# 1. 打开图片
w, h = img.size
r = w / h
if w > h:
w_new = math.ceil(math.sqrt(img_size * img_size * r))
h_new = math.ceil(w_new / r)
else:
h_new = math.ceil(math.sqrt(img_size * img_size / r))
w_new = math.ceil(h_new * r)
h_new = math.ceil(h_new) // 16 * 16
w_new = math.ceil(w_new) // 16 * 16
img_resized = img.resize((w_new, h_new))
return img_resized, img.size
@torch.inference_mode()
def generate_image(
self,
prompt,
negative_prompt,
ref_images,
num_steps,
cfg_guidance,
seed,
num_samples=1,
init_image=None,
image2image_strength=0.0,
show_progress=False,
size_level=512,
):
assert num_samples == 1, "num_samples > 1 is not supported yet."
ref_images_raw, img_info = self.input_process_image(ref_images, img_size=size_level)
width, height = ref_images_raw.width, ref_images_raw.height
ref_images_raw = self.load_image(ref_images_raw)
ref_images_raw = ref_images_raw.to(self.device)
# print(f'self.ae, self.dit device: {self.ae.device}, {self.dit.device}')
ref_images = self.ae.encode(ref_images_raw.to(self.device) * 2 - 1)
seed = int(seed)
seed = torch.Generator(device="cpu").seed() if seed < 0 else seed
t0 = time.perf_counter()
if init_image is not None:
init_image = self.load_image(init_image)
init_image = init_image.to(self.device)
init_image = torch.nn.functional.interpolate(init_image, (height, width))
init_image = self.ae.encode(init_image.to() * 2 - 1)
x = torch.randn(
num_samples,
16,
height // 8,
width // 8,
device=self.device,
dtype=torch.bfloat16,
generator=torch.Generator(device=self.device).manual_seed(seed),
)
timesteps = sampling.get_schedule(
num_steps, x.shape[-1] * x.shape[-2] // 4, shift=True
)
if init_image is not None:
t_idx = int((1 - image2image_strength) * num_steps)
t = timesteps[t_idx]
timesteps = timesteps[t_idx:]
x = t * x + (1.0 - t) * init_image.to(x.dtype)
x = torch.cat([x, x], dim=0)
ref_images = torch.cat([ref_images, ref_images], dim=0)
ref_images_raw = torch.cat([ref_images_raw, ref_images_raw], dim=0)
inputs = self.prepare([prompt, negative_prompt], x, ref_image=ref_images, ref_image_raw=ref_images_raw)
x = self.denoise(
**inputs,
cfg_guidance=cfg_guidance,
timesteps=timesteps,
show_progress=show_progress,
timesteps_truncate=1.0,
)
x = self.unpack(x.float(), height, width)
with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
x = self.ae.decode(x)
x = x.clamp(-1, 1)
x = x.mul(0.5).add(0.5)
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s.")
images_list = []
for img in x.float():
images_list.append(self.output_process_image(F.to_pil_image(img), img_info))
return images_list
# 模型仓库ID(如:"bert-base-uncased")
model_repo = "stepfun-ai/Step1X-Edit"
# 本地保存路径
model_path = "./model_weights"
os.makedirs(model_path, exist_ok=True)
# 下载模型(包括所有文件)
snapshot_download(
repo_id=model_repo,
local_dir=model_path,
local_dir_use_symlinks=False # 避免使用符号链接
)
image_edit = ImageGenerator(
ae_path=os.path.join(model_path, 'vae.safetensors'),
dit_path=os.path.join(model_path, "step1x-edit-i1258.safetensors"),
qwen2vl_model_path='Qwen/Qwen2.5-VL-7B-Instruct',
max_length=640,
)
@spaces.GPU(duration=240)
def inference(prompt, ref_images, seed, size_level):
start_time = time.time()
if seed == -1:
import random
random_seed = random.randint(0, 2**32 - 1)
else:
random_seed = seed
image_edit.to_cuda()
inference_func = image_edit.generate_image
image = inference_func(
prompt,
negative_prompt="",
ref_images=ref_images.convert('RGB'),
num_samples=1,
num_steps=28,
cfg_guidance=6.0,
seed=random_seed,
show_progress=True,
size_level=size_level,
)[0]
print(f"Time taken: {time.time() - start_time:.2f} seconds")
return (ref_images, image), random_seed
with gr.Blocks() as demo:
gr.Markdown(
"""
# Step1X-Edit
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="编辑指令 prompt",
value='Remove the person from the image.',
)
init_image = gr.Image(label="Input Image", type='pil')
random_seed = gr.Number(label="Random Seed", value=-1, minimum=-1)
size_level = gr.Number(label="size level (recommend 512, 768, 1024, min 512)", value=512, minimum=512)
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB')
output_random_seed = gr.Textbox(label="Used Seed", lines=5)
from functools import partial
generate_btn.click(
fn=inference,
inputs=[
prompt,
init_image,
random_seed,
size_level,
],
outputs=[output_image, output_random_seed],
)
gr.Examples(
examples,
inputs=[init_image, prompt, output_image],
outputs=[init_image, prompt, output_image],
fn=generate_examples,
cache_examples=False
)
demo.launch()
|