Update app.py
Browse files
app.py
CHANGED
@@ -2,280 +2,352 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import pipeline, set_seed
|
4 |
from diffusers import StableDiffusionPipeline
|
|
|
5 |
import os
|
6 |
import time
|
|
|
7 |
|
8 |
-
# ----
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
print(f"Using device: {device}")
|
13 |
|
|
|
|
|
14 |
# 1. 语音转文本模型 (Whisper) - 加分项
|
15 |
asr_pipeline = None
|
16 |
try:
|
17 |
-
print("Loading ASR pipeline (Whisper)...")
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
print("ASR pipeline loaded.")
|
22 |
except Exception as e:
|
23 |
print(f"Could not load ASR pipeline: {e}. Voice input will be disabled.")
|
|
|
24 |
|
25 |
-
# 2.
|
26 |
-
prompt_enhancer_pipeline = None
|
27 |
-
try:
|
28 |
-
print("Loading Prompt Enhancer pipeline (GPT-2)...")
|
29 |
-
# 使用 GPT-2 作为示例,实际应用中建议使用更强大的指令微调模型如 Mistral 或 Llama
|
30 |
-
# 注意:GPT-2 可能不会生成特别高质量的SD提示词,这里仅作结构演示
|
31 |
-
# 如果资源允许,可以替换为 'mistralai/Mistral-7B-Instruct-v0.1' 等,但需要更多内存/GPU
|
32 |
-
prompt_enhancer_pipeline = pipeline("text-generation", model="gpt2", device=device if device == "cuda" else -1) # text-generation在CPU上也可以运行
|
33 |
-
print("Prompt Enhancer pipeline loaded.")
|
34 |
-
except Exception as e:
|
35 |
-
print(f"Could not load Prompt Enhancer pipeline: {e}. Prompt enhancement might fail.")
|
36 |
-
|
37 |
-
# 3. 文本到图像模型 (Stable Diffusion) - Step 2
|
38 |
image_generator_pipe = None
|
39 |
try:
|
40 |
-
print("Loading Stable Diffusion pipeline (v1.5)...")
|
|
|
41 |
model_id = "runwayml/stable-diffusion-v1-5"
|
42 |
-
|
|
|
43 |
image_generator_pipe = image_generator_pipe.to(device)
|
44 |
-
|
45 |
-
# image_generator_pipe.enable_model_cpu_offload()
|
46 |
-
print("Stable Diffusion pipeline loaded.")
|
47 |
except Exception as e:
|
48 |
-
print(f"Could not load Stable Diffusion pipeline: {e}. Image generation will fail.")
|
49 |
-
#
|
|
|
50 |
class DummyPipe:
|
51 |
def __call__(self, *args, **kwargs):
|
52 |
-
|
53 |
-
raise RuntimeError(f"Stable Diffusion model failed to load: {e}")
|
54 |
image_generator_pipe = DummyPipe()
|
55 |
|
56 |
|
57 |
-
# ----
|
58 |
|
59 |
-
# Step 1: Prompt-to-Prompt
|
60 |
-
def
|
61 |
-
"""
|
62 |
-
if not
|
63 |
-
|
|
|
|
|
64 |
if not short_prompt:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
f"Detailed Prompt:"
|
75 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
temperature=0.7,
|
89 |
-
no_repeat_ngram_size=2,
|
90 |
-
pad_token_id=prompt_enhancer_pipeline.tokenizer.eos_token_id # 避免padding warning
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
return enhanced
|
108 |
-
|
109 |
except Exception as e:
|
110 |
-
print(f"
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
# Step 2: Prompt-to-Image
|
114 |
-
def
|
115 |
-
"""
|
116 |
if not isinstance(image_generator_pipe, StableDiffusionPipeline):
|
117 |
-
raise gr.Error(
|
118 |
-
if not prompt or "[Error:" in prompt:
|
|
|
119 |
raise gr.Error("Cannot generate image due to invalid or missing prompt.")
|
120 |
|
121 |
-
print(f"Generating image for prompt: {prompt}")
|
122 |
print(f"Negative prompt: {negative_prompt}")
|
123 |
print(f"Guidance scale: {guidance_scale}, Steps: {num_inference_steps}")
|
|
|
124 |
|
125 |
try:
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
print("Image generated successfully.")
|
139 |
return image
|
140 |
except Exception as e:
|
141 |
-
print(f"Error during image generation: {e}")
|
142 |
-
|
143 |
-
|
|
|
144 |
|
145 |
|
146 |
-
# Bonus: Voice-to-Text
|
147 |
def transcribe_audio(audio_file_path):
|
148 |
-
"""
|
149 |
if not asr_pipeline:
|
150 |
-
|
|
|
151 |
if audio_file_path is None:
|
152 |
-
return "",
|
153 |
|
154 |
-
print(f"Transcribing audio file: {audio_file_path}")
|
|
|
155 |
try:
|
156 |
-
#
|
157 |
transcription = asr_pipeline(audio_file_path)["text"]
|
|
|
|
|
158 |
print(f"Transcription result: {transcription}")
|
159 |
-
return transcription, audio_file_path
|
160 |
except Exception as e:
|
161 |
-
print(f"Error during audio transcription: {e}")
|
|
|
|
|
162 |
return f"[Error: Transcription failed: {e}]", audio_file_path
|
163 |
|
164 |
|
165 |
-
# ---- Gradio
|
166 |
|
167 |
def process_input(input_text, audio_file, style_choice, quality_choice, neg_prompt, guidance, steps):
|
168 |
-
"""
|
169 |
final_text_input = ""
|
170 |
-
|
|
|
|
|
171 |
|
172 |
-
#
|
173 |
if input_text and input_text.strip():
|
174 |
final_text_input = input_text.strip()
|
175 |
-
|
176 |
-
# 如果文本框为空,且有音频文件,则使用语音输入
|
177 |
elif audio_file is not None:
|
|
|
178 |
transcribed_text, _ = transcribe_audio(audio_file)
|
179 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
final_text_input = transcribed_text
|
181 |
-
|
182 |
-
elif "[Error:" in transcribed_text:
|
183 |
-
# 如果语音识别出错,直接返回错误信息
|
184 |
-
return transcribed_text, None # 返回错误提示,不生成图像
|
185 |
else:
|
186 |
-
|
187 |
-
|
|
|
188 |
else:
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
print(f"Using input: '{final_text_input}'{transcription_source}")
|
193 |
|
194 |
-
#
|
195 |
-
|
196 |
-
print(f"Enhanced prompt: {enhanced_prompt}")
|
197 |
-
|
198 |
-
# Step 2: Generate image (如果提示词增强成功)
|
199 |
-
generated_image = None
|
200 |
-
if "[Error:" not in enhanced_prompt:
|
201 |
try:
|
202 |
-
|
|
|
|
|
203 |
except gr.Error as e:
|
204 |
-
#
|
205 |
-
|
206 |
-
|
|
|
|
|
207 |
except Exception as e:
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
#
|
212 |
-
|
|
|
213 |
|
214 |
|
215 |
-
# ---- Gradio
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
220 |
|
221 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
222 |
-
gr.Markdown("# AI Image Generator
|
223 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
with gr.Row():
|
226 |
with gr.Column(scale=1):
|
227 |
-
#
|
228 |
-
inp_text = gr.Textbox(label="Enter short description
|
229 |
-
|
230 |
-
#
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
#
|
|
|
|
|
|
|
238 |
inp_quality = gr.Radio(label="Quality Boost", choices=quality_options, value="highly detailed")
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
#
|
244 |
-
|
245 |
-
|
246 |
-
#
|
247 |
-
inp_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Inference Steps")
|
248 |
-
|
249 |
-
# 提交按钮
|
250 |
btn_generate = gr.Button("Generate Image", variant="primary")
|
251 |
|
252 |
with gr.Column(scale=1):
|
253 |
-
#
|
254 |
-
out_prompt = gr.Textbox(label="Generated Prompt", interactive=False) #
|
255 |
-
out_image = gr.Image(label="Generated Image", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
# 设置按钮点击事件
|
258 |
btn_generate.click(
|
259 |
fn=process_input,
|
260 |
-
inputs=
|
261 |
outputs=[out_prompt, out_image]
|
262 |
)
|
263 |
|
264 |
-
#
|
265 |
if asr_pipeline:
|
266 |
def clear_text_on_audio(audio_data):
|
267 |
if audio_data is not None:
|
268 |
-
return "" #
|
269 |
-
return gr.update() #
|
270 |
inp_audio.change(fn=clear_text_on_audio, inputs=inp_audio, outputs=inp_text)
|
271 |
|
272 |
|
273 |
-
# ----
|
274 |
if __name__ == "__main__":
|
275 |
-
#
|
276 |
-
|
277 |
-
|
|
|
|
|
278 |
|
279 |
-
#
|
280 |
-
# share=True
|
281 |
-
demo.launch(share=False)
|
|
|
2 |
import torch
|
3 |
from transformers import pipeline, set_seed
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
+
import openai
|
6 |
import os
|
7 |
import time
|
8 |
+
import traceback # For detailed error logging
|
9 |
|
10 |
+
# ---- Configuration & API Key ----
|
11 |
+
# Check for OpenAI API Key in Hugging Face Secrets
|
12 |
+
api_key = os.environ.get("OPENAI_API_KEY")
|
13 |
+
openai_client = None
|
14 |
+
openai_available = False
|
15 |
|
16 |
+
if api_key:
|
17 |
+
try:
|
18 |
+
openai.api_key = api_key
|
19 |
+
# Starting with openai v1, client instantiation is preferred
|
20 |
+
openai_client = openai.OpenAI(api_key=api_key)
|
21 |
+
# Simple test to check if the key is valid (optional, but good)
|
22 |
+
# openai_client.models.list() # This call might incur small cost/quota usage
|
23 |
+
openai_available = True
|
24 |
+
print("OpenAI API key found and client initialized.")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error initializing OpenAI client: {e}")
|
27 |
+
print("Proceeding without OpenAI features.")
|
28 |
+
else:
|
29 |
+
print("WARNING: OPENAI_API_KEY secret not found. Prompt enhancement via OpenAI is disabled.")
|
30 |
+
|
31 |
+
# Force CPU usage
|
32 |
+
device = "cpu"
|
33 |
print(f"Using device: {device}")
|
34 |
|
35 |
+
# ---- Model Loading (CPU Focused) ----
|
36 |
+
|
37 |
# 1. 语音转文本模型 (Whisper) - 加分项
|
38 |
asr_pipeline = None
|
39 |
try:
|
40 |
+
print("Loading ASR pipeline (Whisper) on CPU...")
|
41 |
+
# Force CPU usage with device=-1 or device="cpu"
|
42 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
43 |
+
print("ASR pipeline loaded successfully on CPU.")
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Could not load ASR pipeline: {e}. Voice input will be disabled.")
|
46 |
+
traceback.print_exc() # Print full traceback for debugging
|
47 |
|
48 |
+
# 2. 文本到图像模型 (Stable Diffusion) - Step 2 (CPU)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
image_generator_pipe = None
|
50 |
try:
|
51 |
+
print("Loading Stable Diffusion pipeline (v1.5) on CPU...")
|
52 |
+
print("WARNING: Stable Diffusion on CPU is VERY SLOW (expect minutes per image).")
|
53 |
model_id = "runwayml/stable-diffusion-v1-5"
|
54 |
+
# Use float32 for CPU
|
55 |
+
image_generator_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
56 |
image_generator_pipe = image_generator_pipe.to(device)
|
57 |
+
print("Stable Diffusion pipeline loaded successfully on CPU.")
|
|
|
|
|
58 |
except Exception as e:
|
59 |
+
print(f"CRITICAL: Could not load Stable Diffusion pipeline: {e}. Image generation will fail.")
|
60 |
+
traceback.print_exc() # Print full traceback for debugging
|
61 |
+
# Define a dummy object to prevent crashes later if loading failed
|
62 |
class DummyPipe:
|
63 |
def __call__(self, *args, **kwargs):
|
64 |
+
raise RuntimeError(f"Stable Diffusion model failed to load: {e}")
|
|
|
65 |
image_generator_pipe = DummyPipe()
|
66 |
|
67 |
|
68 |
+
# ---- Core Function Definitions ----
|
69 |
|
70 |
+
# Step 1: Prompt-to-Prompt (using OpenAI API)
|
71 |
+
def enhance_prompt_openai(short_prompt, style_modifier="cinematic", quality_boost="photorealistic, highly detailed"):
|
72 |
+
"""Uses OpenAI API to enhance the short description."""
|
73 |
+
if not openai_available or not openai_client:
|
74 |
+
# Fallback or error if OpenAI key is missing/invalid
|
75 |
+
print("OpenAI not available. Returning original prompt with modifiers.")
|
76 |
+
return f"{short_prompt}, {style_modifier}, {quality_boost}"
|
77 |
if not short_prompt:
|
78 |
+
# Return an error message formatted for Gradio output
|
79 |
+
raise gr.Error("Input description cannot be empty.")
|
80 |
+
|
81 |
+
# Construct the prompt for the OpenAI model
|
82 |
+
system_message = (
|
83 |
+
"You are an expert prompt engineer for AI image generation models like Stable Diffusion. "
|
84 |
+
"Expand the user's short description into a detailed, vivid, and coherent prompt. "
|
85 |
+
"Focus on visual details: subjects, objects, environment, lighting, atmosphere, composition. "
|
86 |
+
"Incorporate the requested style and quality keywords naturally. Avoid conversational text."
|
|
|
87 |
)
|
88 |
+
user_message = (
|
89 |
+
f"Enhance this description: \"{short_prompt}\". "
|
90 |
+
f"Style: '{style_modifier}'. Quality: '{quality_boost}'."
|
91 |
+
)
|
92 |
+
|
93 |
+
print(f"Sending request to OpenAI for prompt enhancement: {short_prompt}")
|
94 |
|
95 |
try:
|
96 |
+
response = openai_client.chat.completions.create(
|
97 |
+
model="gpt-3.5-turbo", # Cost-effective choice, can use gpt-4 if needed/key allows
|
98 |
+
messages=[
|
99 |
+
{"role": "system", "content": system_message},
|
100 |
+
{"role": "user", "content": user_message},
|
101 |
+
],
|
102 |
+
temperature=0.7, # Controls creativity vs predictability
|
103 |
+
max_tokens=150, # Limit output length
|
104 |
+
n=1, # Generate one response
|
105 |
+
stop=None # Let the model decide when to stop
|
|
|
|
|
|
|
106 |
)
|
107 |
+
enhanced_prompt = response.choices[0].message.content.strip()
|
108 |
+
print("OpenAI enhancement successful.")
|
109 |
+
# Basic cleanup: remove potential quotes around the whole response
|
110 |
+
if enhanced_prompt.startswith('"') and enhanced_prompt.endswith('"'):
|
111 |
+
enhanced_prompt = enhanced_prompt[1:-1]
|
112 |
+
return enhanced_prompt
|
113 |
+
except openai.AuthenticationError:
|
114 |
+
print("OpenAI Authentication Error: Invalid API key?")
|
115 |
+
raise gr.Error("OpenAI Authentication Error: Check your API key.")
|
116 |
+
except openai.RateLimitError:
|
117 |
+
print("OpenAI Rate Limit Error: You've exceeded your quota or rate limit.")
|
118 |
+
raise gr.Error("OpenAI Error: Rate limit exceeded.")
|
119 |
+
except openai.APIError as e:
|
120 |
+
print(f"OpenAI API Error: {e}")
|
121 |
+
raise gr.Error(f"OpenAI API Error: {e}")
|
|
|
|
|
122 |
except Exception as e:
|
123 |
+
print(f"An unexpected error occurred during OpenAI call: {e}")
|
124 |
+
traceback.print_exc()
|
125 |
+
raise gr.Error(f"Prompt enhancement failed: {e}")
|
126 |
+
|
127 |
|
128 |
+
# Step 2: Prompt-to-Image (CPU)
|
129 |
+
def generate_image_cpu(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
130 |
+
"""Generates image using Stable Diffusion on CPU."""
|
131 |
if not isinstance(image_generator_pipe, StableDiffusionPipeline):
|
132 |
+
raise gr.Error("Stable Diffusion model is not available (failed to load).")
|
133 |
+
if not prompt or "[Error:" in prompt or "Error:" in prompt:
|
134 |
+
# Check if the prompt itself is an error message from the previous step
|
135 |
raise gr.Error("Cannot generate image due to invalid or missing prompt.")
|
136 |
|
137 |
+
print(f"Generating image on CPU for prompt: {prompt[:100]}...") # Log truncated prompt
|
138 |
print(f"Negative prompt: {negative_prompt}")
|
139 |
print(f"Guidance scale: {guidance_scale}, Steps: {num_inference_steps}")
|
140 |
+
start_time = time.time()
|
141 |
|
142 |
try:
|
143 |
+
# Use torch.inference_mode() or torch.no_grad() for efficiency
|
144 |
+
with torch.no_grad():
|
145 |
+
# Seed for reproducibility (optional, but good practice)
|
146 |
+
generator = torch.Generator(device=device).manual_seed(int(time.time()))
|
147 |
+
image = image_generator_pipe(
|
148 |
+
prompt=prompt,
|
149 |
+
negative_prompt=negative_prompt,
|
150 |
+
guidance_scale=float(guidance_scale),
|
151 |
+
num_inference_steps=int(num_inference_steps),
|
152 |
+
generator=generator,
|
153 |
+
).images[0]
|
154 |
+
end_time = time.time()
|
155 |
+
print(f"Image generated successfully on CPU in {end_time - start_time:.2f} seconds.")
|
156 |
return image
|
157 |
except Exception as e:
|
158 |
+
print(f"Error during image generation on CPU: {e}")
|
159 |
+
traceback.print_exc()
|
160 |
+
# Propagate error to Gradio UI
|
161 |
+
raise gr.Error(f"Image generation failed on CPU: {e}")
|
162 |
|
163 |
|
164 |
+
# Bonus: Voice-to-Text (CPU)
|
165 |
def transcribe_audio(audio_file_path):
|
166 |
+
"""Transcribes audio to text using Whisper on CPU."""
|
167 |
if not asr_pipeline:
|
168 |
+
# This case should ideally be handled by hiding the control, but double-check
|
169 |
+
return "[Error: ASR model not loaded]", audio_file_path
|
170 |
if audio_file_path is None:
|
171 |
+
return "", audio_file_path # No audio input
|
172 |
|
173 |
+
print(f"Transcribing audio file: {audio_file_path} on CPU...")
|
174 |
+
start_time = time.time()
|
175 |
try:
|
176 |
+
# Ensure the pipeline uses the correct device (should be CPU based on loading)
|
177 |
transcription = asr_pipeline(audio_file_path)["text"]
|
178 |
+
end_time = time.time()
|
179 |
+
print(f"Transcription successful in {end_time - start_time:.2f} seconds.")
|
180 |
print(f"Transcription result: {transcription}")
|
181 |
+
return transcription, audio_file_path
|
182 |
except Exception as e:
|
183 |
+
print(f"Error during audio transcription on CPU: {e}")
|
184 |
+
traceback.print_exc()
|
185 |
+
# Return error message in the expected tuple format
|
186 |
return f"[Error: Transcription failed: {e}]", audio_file_path
|
187 |
|
188 |
|
189 |
+
# ---- Gradio Application Flow ----
|
190 |
|
191 |
def process_input(input_text, audio_file, style_choice, quality_choice, neg_prompt, guidance, steps):
|
192 |
+
"""Main function triggered by Gradio button."""
|
193 |
final_text_input = ""
|
194 |
+
enhanced_prompt = ""
|
195 |
+
generated_image = None
|
196 |
+
status_message = "" # To gather status/errors for the prompt box
|
197 |
|
198 |
+
# 1. Determine Input (Text or Audio)
|
199 |
if input_text and input_text.strip():
|
200 |
final_text_input = input_text.strip()
|
201 |
+
print(f"Using text input: '{final_text_input}'")
|
|
|
202 |
elif audio_file is not None:
|
203 |
+
print("Processing audio input...")
|
204 |
transcribed_text, _ = transcribe_audio(audio_file)
|
205 |
+
if "[Error:" in transcribed_text:
|
206 |
+
# Display transcription error clearly
|
207 |
+
status_message = transcribed_text
|
208 |
+
print(status_message)
|
209 |
+
# Return error in prompt field, no image
|
210 |
+
return status_message, None
|
211 |
+
elif transcribed_text:
|
212 |
final_text_input = transcribed_text
|
213 |
+
print(f"Using transcribed audio input: '{final_text_input}'")
|
|
|
|
|
|
|
214 |
else:
|
215 |
+
status_message = "[Error: Audio input received but transcription was empty.]"
|
216 |
+
print(status_message)
|
217 |
+
return status_message, None # Return error
|
218 |
else:
|
219 |
+
status_message = "[Error: No input provided. Please enter text or record audio.]"
|
220 |
+
print(status_message)
|
221 |
+
return status_message, None # Return error
|
|
|
222 |
|
223 |
+
# 2. Enhance Prompt (using OpenAI if available)
|
224 |
+
if final_text_input:
|
|
|
|
|
|
|
|
|
|
|
225 |
try:
|
226 |
+
enhanced_prompt = enhance_prompt_openai(final_text_input, style_choice, quality_choice)
|
227 |
+
status_message = enhanced_prompt # Display the prompt
|
228 |
+
print(f"Enhanced prompt: {enhanced_prompt}")
|
229 |
except gr.Error as e:
|
230 |
+
# Catch Gradio-specific errors from enhancement function
|
231 |
+
status_message = f"[Prompt Enhancement Error: {e}]"
|
232 |
+
print(status_message)
|
233 |
+
# Return the error, no image generation attempt
|
234 |
+
return status_message, None
|
235 |
except Exception as e:
|
236 |
+
# Catch any other unexpected errors
|
237 |
+
status_message = f"[Unexpected Prompt Enhancement Error: {e}]"
|
238 |
+
print(status_message)
|
239 |
+
traceback.print_exc()
|
240 |
+
return status_message, None
|
241 |
+
|
242 |
+
# 3. Generate Image (if prompt is valid)
|
243 |
+
if enhanced_prompt and not status_message.startswith("[Error:") and not status_message.startswith("[Prompt Enhancement Error:"):
|
244 |
+
try:
|
245 |
+
# Show "Generating..." message while waiting
|
246 |
+
gr.Info("Starting image generation on CPU... This will take a while (possibly several minutes).")
|
247 |
+
generated_image = generate_image_cpu(enhanced_prompt, neg_prompt, guidance, steps)
|
248 |
+
gr.Info("Image generation complete!")
|
249 |
+
except gr.Error as e:
|
250 |
+
# Catch Gradio errors from generation function
|
251 |
+
status_message = f"{enhanced_prompt}\n\n[Image Generation Error: {e}]" # Append error to prompt
|
252 |
+
print(f"Image Generation Error: {e}")
|
253 |
+
except Exception as e:
|
254 |
+
status_message = f"{enhanced_prompt}\n\n[Unexpected Image Generation Error: {e}]"
|
255 |
+
print(f"Unexpected Image Generation Error: {e}")
|
256 |
+
traceback.print_exc()
|
257 |
+
# Set image to None explicitly on error
|
258 |
+
generated_image = None
|
259 |
|
260 |
+
# 4. Return results to Gradio UI
|
261 |
+
# Return the status message (enhanced prompt or error) and the image (or None if error)
|
262 |
+
return status_message, generated_image
|
263 |
|
264 |
|
265 |
+
# ---- Gradio Interface Construction ----
|
266 |
|
267 |
+
style_options = ["cinematic", "photorealistic", "anime", "fantasy art", "cyberpunk", "steampunk", "watercolor", "illustration", "low poly"]
|
268 |
+
quality_options = ["highly detailed", "sharp focus", "intricate details", "4k", "masterpiece", "best quality", "professional lighting"]
|
269 |
+
|
270 |
+
# Reduced steps for faster CPU generation attempt
|
271 |
+
default_steps = 20
|
272 |
+
max_steps = 50 # Limit max steps on CPU
|
273 |
|
274 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
275 |
+
gr.Markdown("# AI Image Generator (CPU Version)")
|
276 |
+
gr.Markdown(
|
277 |
+
"**Enter a short description or use voice input.** The app uses OpenAI (if API key is provided) "
|
278 |
+
"to create a detailed prompt, then generates an image using Stable Diffusion v1.5 **on the CPU**."
|
279 |
+
)
|
280 |
+
# Add specific warning about CPU speed
|
281 |
+
gr.HTML("<p style='color:orange;font-weight:bold;'>⚠️ Warning: Image generation on CPU is very slow! Expect several minutes per image.</p>")
|
282 |
+
|
283 |
+
# Display OpenAI availability status
|
284 |
+
if not openai_available:
|
285 |
+
gr.Markdown("**Note:** OpenAI API key not found or invalid. Prompt enhancement will use a basic fallback.")
|
286 |
|
287 |
with gr.Row():
|
288 |
with gr.Column(scale=1):
|
289 |
+
# --- Inputs ---
|
290 |
+
inp_text = gr.Textbox(label="Enter short description", placeholder="e.g., A cute robot drinking coffee on Mars")
|
291 |
+
|
292 |
+
# Only show Audio input if ASR model loaded successfully
|
293 |
+
if asr_pipeline:
|
294 |
+
inp_audio = gr.Audio(sources=["microphone"], type="filepath", label="Or record your idea (clears text box if used)")
|
295 |
+
else:
|
296 |
+
gr.Markdown("**Voice input disabled:** Whisper model failed to load.")
|
297 |
+
inp_audio = gr.Textbox(visible=False) # Hidden placeholder
|
298 |
+
|
299 |
+
# --- Controls (Step 3 requirements met) ---
|
300 |
+
# Control 1: Dropdown
|
301 |
+
inp_style = gr.Dropdown(label="Base Style", choices=style_options, value="cinematic")
|
302 |
+
# Control 2: Radio
|
303 |
inp_quality = gr.Radio(label="Quality Boost", choices=quality_options, value="highly detailed")
|
304 |
+
# Control 3: Textbox (Negative Prompt)
|
305 |
+
inp_neg_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="e.g., blurry, low quality, text, watermark, signature, deformed")
|
306 |
+
# Control 4: Slider (Guidance Scale)
|
307 |
+
inp_guidance = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.0, label="Guidance Scale (CFG)") # Slightly lower max maybe better for CPU
|
308 |
+
# Control 5: Slider (Inference Steps) - Reduced max/default
|
309 |
+
inp_steps = gr.Slider(minimum=10, maximum=max_steps, step=1, value=default_steps, label=f"Inference Steps (lower = faster but less detail, max {max_steps})")
|
310 |
+
|
311 |
+
# --- Action Button ---
|
|
|
|
|
|
|
312 |
btn_generate = gr.Button("Generate Image", variant="primary")
|
313 |
|
314 |
with gr.Column(scale=1):
|
315 |
+
# --- Outputs ---
|
316 |
+
out_prompt = gr.Textbox(label="Generated Prompt / Status", interactive=False, lines=5) # Show prompt or error status here
|
317 |
+
out_image = gr.Image(label="Generated Image", type="pil")
|
318 |
+
|
319 |
+
# --- Event Handling ---
|
320 |
+
# Define inputs list carefully, handling potentially invisible audio input
|
321 |
+
inputs_list = [inp_text]
|
322 |
+
if asr_pipeline:
|
323 |
+
inputs_list.append(inp_audio)
|
324 |
+
else:
|
325 |
+
inputs_list.append(gr.State(None)) # Pass None if audio control doesn't exist
|
326 |
+
|
327 |
+
inputs_list.extend([inp_style, inp_quality, inp_neg_prompt, inp_guidance, inp_steps])
|
328 |
|
|
|
329 |
btn_generate.click(
|
330 |
fn=process_input,
|
331 |
+
inputs=inputs_list,
|
332 |
outputs=[out_prompt, out_image]
|
333 |
)
|
334 |
|
335 |
+
# Clear text input if audio is used
|
336 |
if asr_pipeline:
|
337 |
def clear_text_on_audio(audio_data):
|
338 |
if audio_data is not None:
|
339 |
+
return "" # Clear text box
|
340 |
+
return gr.update() # No change if no audio data
|
341 |
inp_audio.change(fn=clear_text_on_audio, inputs=inp_audio, outputs=inp_text)
|
342 |
|
343 |
|
344 |
+
# ---- Application Launch ----
|
345 |
if __name__ == "__main__":
|
346 |
+
# Check again if SD loaded, maybe prevent launch? Or let it run and fail gracefully in UI.
|
347 |
+
if not isinstance(image_generator_pipe, StableDiffusionPipeline):
|
348 |
+
print("CRITICAL FAILURE: Stable Diffusion pipeline did not load. The application UI will load, but image generation WILL NOT WORK.")
|
349 |
+
# Optionally, you could raise an error here to stop the script if SD is essential
|
350 |
+
# raise RuntimeError("Failed to load Stable Diffusion pipeline, cannot start application.")
|
351 |
|
352 |
+
# Launch the Gradio app
|
353 |
+
demo.launch(share=False) # share=True generates a public link if run locally
|
|