Spaces:
Sleeping
Sleeping
Commit
·
0562abf
1
Parent(s):
d33f21a
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
def square_number(input_number):
|
4 |
-
return input_number ** 2
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
from langchain.chains import RetrievalQA
|
3 |
+
from langchain.llms import OpenAI
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.indexes import VectorstoreIndexCreator
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
import gradio as gr
|
10 |
+
import tempfile
|
11 |
|
|
|
|
|
12 |
|
13 |
+
def qa(file, openaikey, query, chain_type, k):
|
14 |
+
os.environ["OPENAI_API_KEY"] = openaikey
|
15 |
+
|
16 |
+
# load document
|
17 |
+
loader = PyPDFLoader(file.name)
|
18 |
+
documents = loader.load()
|
19 |
+
# split the documents into chunks
|
20 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
21 |
+
texts = text_splitter.split_documents(documents)
|
22 |
+
# select which embeddings we want to use
|
23 |
+
embeddings = OpenAIEmbeddings()
|
24 |
+
# create the vectorestore to use as the index
|
25 |
+
db = Chroma.from_documents(texts, embeddings)
|
26 |
+
# expose this index in a retriever interface
|
27 |
+
retriever = db.as_retriever(
|
28 |
+
search_type="similarity", search_kwargs={"k": k})
|
29 |
+
# create a chain to answer questions
|
30 |
+
qa = RetrievalQA.from_chain_type(
|
31 |
+
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
|
32 |
+
result = qa({"query": query})
|
33 |
+
print(result['result'])
|
34 |
+
return result["result"]
|
35 |
+
|
36 |
+
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=qa,
|
39 |
+
inputs=[
|
40 |
+
gr.inputs.File(label="Upload PDF"),
|
41 |
+
gr.inputs.Textbox(label="OpenAI API Key"),
|
42 |
+
gr.inputs.Textbox(label="Your question"),
|
43 |
+
gr.inputs.Dropdown(choices=['stuff', 'map_reduce', "refine", "map_rerank"], label="Chain type"),
|
44 |
+
gr.inputs.Slider(minimum=1, maximum=5, default=2, label="Number of relevant chunks"),
|
45 |
+
],
|
46 |
+
outputs="text",
|
47 |
+
title="Question Answering with your PDF file",
|
48 |
+
description="Upload a PDF file, enter OpenAI API key, type a question and get your answer."
|
49 |
+
)
|
50 |
+
|
51 |
iface.launch()
|