Daniel Kantor
commited on
Commit
·
dd9222d
1
Parent(s):
c2f7972
fix columns
Browse files- backend/app/services/leaderboard.py +11 -28
- docker-compose.yml +2 -2
- frontend/src/pages/LeaderboardPage/components/Leaderboard/components/Table/hooks/useDataProcessing.js +2 -0
- frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js +10 -38
- frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js +229 -239
- frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useLeaderboardData.js +4 -1
- frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js +80 -80
backend/app/services/leaderboard.py
CHANGED
@@ -116,38 +116,21 @@ class LeaderboardService:
|
|
116 |
)
|
117 |
|
118 |
# Create unique ID combining model name, precision, sha and chat template status
|
|
|
119 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
120 |
|
|
|
|
|
121 |
evaluations = {
|
122 |
-
"
|
123 |
-
"name": "
|
124 |
-
"value": data.get("
|
125 |
-
"normalized_score": data.get("
|
126 |
-
},
|
127 |
-
"bbh": {
|
128 |
-
"name": "BBH",
|
129 |
-
"value": data.get("BBH Raw", 0),
|
130 |
-
"normalized_score": data.get("BBH", 0),
|
131 |
-
},
|
132 |
-
"math": {
|
133 |
-
"name": "MATH Level 5",
|
134 |
-
"value": data.get("MATH Lvl 5 Raw", 0),
|
135 |
-
"normalized_score": data.get("MATH Lvl 5", 0),
|
136 |
-
},
|
137 |
-
"gpqa": {
|
138 |
-
"name": "GPQA",
|
139 |
-
"value": data.get("GPQA Raw", 0),
|
140 |
-
"normalized_score": data.get("GPQA", 0),
|
141 |
-
},
|
142 |
-
"musr": {
|
143 |
-
"name": "MUSR",
|
144 |
-
"value": data.get("MUSR Raw", 0),
|
145 |
-
"normalized_score": data.get("MUSR", 0),
|
146 |
},
|
147 |
-
"
|
148 |
-
"name": "
|
149 |
-
"value": data.get("
|
150 |
-
"normalized_score": data.get("
|
151 |
},
|
152 |
}
|
153 |
|
|
|
116 |
)
|
117 |
|
118 |
# Create unique ID combining model name, precision, sha and chat template status
|
119 |
+
|
120 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
121 |
|
122 |
+
print(data)
|
123 |
+
|
124 |
evaluations = {
|
125 |
+
"safetensors": {
|
126 |
+
"name": "SafeTensors",
|
127 |
+
"value": data.get("safetensors", 0),
|
128 |
+
"normalized_score": data.get("safetensors", 0),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
},
|
130 |
+
"secure_coding": {
|
131 |
+
"name": "Secure Coding",
|
132 |
+
"value": data.get("secure_coding", 0),
|
133 |
+
"normalized_score": data.get("secure_coding", 0),
|
134 |
},
|
135 |
}
|
136 |
|
docker-compose.yml
CHANGED
@@ -19,10 +19,10 @@ services:
|
|
19 |
build:
|
20 |
context: ./frontend
|
21 |
dockerfile: Dockerfile.dev
|
|
|
|
|
22 |
ports:
|
23 |
- "${FRONTEND_PORT:-7861}:7861"
|
24 |
-
args:
|
25 |
-
- OAUTH_CLIENT_ID=${OAUTH_CLIENT_ID}
|
26 |
volumes:
|
27 |
- ./frontend:/app
|
28 |
- /app/node_modules
|
|
|
19 |
build:
|
20 |
context: ./frontend
|
21 |
dockerfile: Dockerfile.dev
|
22 |
+
args:
|
23 |
+
- OAUTH_CLIENT_ID=${OAUTH_CLIENT_ID}
|
24 |
ports:
|
25 |
- "${FRONTEND_PORT:-7861}:7861"
|
|
|
|
|
26 |
volumes:
|
27 |
- ./frontend:/app
|
28 |
- /app/node_modules
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/components/Table/hooks/useDataProcessing.js
CHANGED
@@ -37,6 +37,8 @@ export const useDataProcessing = (
|
|
37 |
const processedData = useProcessedData(data, averageMode, visibleColumns);
|
38 |
const columnVisibility = useColumnVisibility(visibleColumns);
|
39 |
|
|
|
|
|
40 |
// Memoize filters
|
41 |
const filterConfig = useMemo(
|
42 |
() => ({
|
|
|
37 |
const processedData = useProcessedData(data, averageMode, visibleColumns);
|
38 |
const columnVisibility = useColumnVisibility(visibleColumns);
|
39 |
|
40 |
+
console.log({visibleColumns});
|
41 |
+
|
42 |
// Memoize filters
|
43 |
const filterConfig = useMemo(
|
44 |
() => ({
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js
CHANGED
@@ -117,49 +117,25 @@ const COLUMNS = {
|
|
117 |
defaultVisible: true,
|
118 |
label: "Model",
|
119 |
},
|
120 |
-
"model.average_score": {
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
},
|
126 |
},
|
127 |
EVALUATION: {
|
128 |
-
"evaluations.
|
129 |
-
group: "evaluation",
|
130 |
-
size: COLUMN_SIZES.BENCHMARK,
|
131 |
-
defaultVisible: true,
|
132 |
-
label: "IFEval",
|
133 |
-
},
|
134 |
-
"evaluations.bbh.normalized_score": {
|
135 |
-
group: "evaluation",
|
136 |
-
size: COLUMN_SIZES.BENCHMARK,
|
137 |
-
defaultVisible: true,
|
138 |
-
label: "BBH",
|
139 |
-
},
|
140 |
-
"evaluations.math.normalized_score": {
|
141 |
-
group: "evaluation",
|
142 |
-
size: COLUMN_SIZES.BENCHMARK,
|
143 |
-
defaultVisible: true,
|
144 |
-
label: "MATH",
|
145 |
-
},
|
146 |
-
"evaluations.gpqa.normalized_score": {
|
147 |
-
group: "evaluation",
|
148 |
-
size: COLUMN_SIZES.BENCHMARK,
|
149 |
-
defaultVisible: true,
|
150 |
-
label: "GPQA",
|
151 |
-
},
|
152 |
-
"evaluations.musr.normalized_score": {
|
153 |
group: "evaluation",
|
154 |
size: COLUMN_SIZES.BENCHMARK,
|
155 |
defaultVisible: true,
|
156 |
-
label: "
|
157 |
},
|
158 |
-
"evaluations.
|
159 |
group: "evaluation",
|
160 |
size: COLUMN_SIZES.BENCHMARK,
|
161 |
defaultVisible: true,
|
162 |
-
label: "
|
163 |
},
|
164 |
},
|
165 |
MODEL_INFO: {
|
@@ -373,8 +349,4 @@ export const SKELETON_COLUMNS = [
|
|
373 |
COLUMN_SIZES.AVERAGE_SCORE, // Average score
|
374 |
COLUMN_SIZES.BENCHMARK, // Benchmark 1
|
375 |
COLUMN_SIZES.BENCHMARK, // Benchmark 2
|
376 |
-
COLUMN_SIZES.BENCHMARK, // Benchmark 3
|
377 |
-
COLUMN_SIZES.BENCHMARK, // Benchmark 4
|
378 |
-
COLUMN_SIZES.BENCHMARK, // Benchmark 5
|
379 |
-
COLUMN_SIZES.BENCHMARK, // Benchmark 6
|
380 |
];
|
|
|
117 |
defaultVisible: true,
|
118 |
label: "Model",
|
119 |
},
|
120 |
+
//"model.average_score": {
|
121 |
+
// group: "fixed",
|
122 |
+
// size: COLUMN_SIZES.AVERAGE_SCORE,
|
123 |
+
// defaultVisible: true,
|
124 |
+
// label: "Average Score",
|
125 |
+
//},
|
126 |
},
|
127 |
EVALUATION: {
|
128 |
+
"evaluations.safetensors.value": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
group: "evaluation",
|
130 |
size: COLUMN_SIZES.BENCHMARK,
|
131 |
defaultVisible: true,
|
132 |
+
label: "Safetensors usage",
|
133 |
},
|
134 |
+
"evaluations.secure_coding.value": {
|
135 |
group: "evaluation",
|
136 |
size: COLUMN_SIZES.BENCHMARK,
|
137 |
defaultVisible: true,
|
138 |
+
label: "Secure coding practices",
|
139 |
},
|
140 |
},
|
141 |
MODEL_INFO: {
|
|
|
349 |
COLUMN_SIZES.AVERAGE_SCORE, // Average score
|
350 |
COLUMN_SIZES.BENCHMARK, // Benchmark 1
|
351 |
COLUMN_SIZES.BENCHMARK, // Benchmark 2
|
|
|
|
|
|
|
|
|
352 |
];
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js
CHANGED
@@ -29,245 +29,235 @@ const createTooltipContent = (title, items) => (
|
|
29 |
);
|
30 |
|
31 |
export const COLUMN_TOOLTIPS = {
|
32 |
-
AVERAGE: createTooltipContent("Average score across all benchmarks:", [
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
]),
|
42 |
-
|
43 |
-
IFEVAL: createTooltipContent("Instruction-Following Evaluation (IFEval):", [
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
]),
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
{
|
67 |
-
label: "
|
68 |
-
description:
|
69 |
-
|
70 |
-
},
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
]
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
{
|
117 |
-
label: "
|
118 |
-
description:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
]
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
]
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
]
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
"
|
252 |
-
"
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
href="https://huggingface.co/docs/leaderboards/open_llm_leaderboard/emissions"
|
262 |
-
target="_blank"
|
263 |
-
rel="noopener noreferrer"
|
264 |
-
style={{ color: "#90caf9" }}
|
265 |
-
>
|
266 |
-
Carbon Emissions Documentation ↗
|
267 |
-
</a>,
|
268 |
-
],
|
269 |
-
},
|
270 |
-
]),
|
271 |
};
|
272 |
|
273 |
export const UI_TOOLTIPS = {
|
|
|
29 |
);
|
30 |
|
31 |
export const COLUMN_TOOLTIPS = {
|
32 |
+
//AVERAGE: createTooltipContent("Average score across all benchmarks:", [
|
33 |
+
// {
|
34 |
+
// label: "Calculation",
|
35 |
+
// description: "Weighted average of normalized scores from all benchmarks",
|
36 |
+
// subItems: [
|
37 |
+
// "Each benchmark is normalized to a 0-100 scale",
|
38 |
+
// "All normalised benchmarks are then averaged together",
|
39 |
+
// ],
|
40 |
+
// },
|
41 |
+
//]),
|
42 |
+
//
|
43 |
+
//IFEVAL: createTooltipContent("Instruction-Following Evaluation (IFEval):", [
|
44 |
+
// {
|
45 |
+
// label: "Purpose",
|
46 |
+
// description:
|
47 |
+
// "Tests model's ability to follow explicit formatting instructions",
|
48 |
+
// subItems: ["Instruction following", "Formatting", "Generation"],
|
49 |
+
// },
|
50 |
+
// {
|
51 |
+
// label: "Scoring: Accuracy",
|
52 |
+
// description: "Was the format asked for strictly respected.",
|
53 |
+
// },
|
54 |
+
//]),
|
55 |
+
//
|
56 |
+
// {
|
57 |
+
// label: "Scoring: Accuracy",
|
58 |
+
// description:
|
59 |
+
// "Was the correct choice selected among the options.",
|
60 |
+
// },
|
61 |
+
//]),
|
62 |
+
//
|
63 |
+
//MATH: createTooltipContent(
|
64 |
+
// "Mathematics Aptitude Test of Heuristics (MATH), level 5:",
|
65 |
+
// [
|
66 |
+
// {
|
67 |
+
// label: "Content",
|
68 |
+
// description: "High school level competitions mathematical problems",
|
69 |
+
// subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
|
70 |
+
// },
|
71 |
+
// {
|
72 |
+
// label: "Scoring: Exact match",
|
73 |
+
// description:
|
74 |
+
// "Was the solution generated correct and in the expected format",
|
75 |
+
// },
|
76 |
+
// ]
|
77 |
+
//),
|
78 |
+
//
|
79 |
+
//GPQA: createTooltipContent("Graduate-Level Google-Proof Q&A (GPQA):", [
|
80 |
+
// {
|
81 |
+
// label: "Focus",
|
82 |
+
// description: "PhD-level knowledge multiple choice questions in science",
|
83 |
+
// subItems: [
|
84 |
+
// "Chemistry",
|
85 |
+
// "Biology",
|
86 |
+
// "Physics",
|
87 |
+
// ],
|
88 |
+
// },
|
89 |
+
// {
|
90 |
+
// label: "Scoring: Accuracy",
|
91 |
+
// description:
|
92 |
+
// "Was the correct choice selected among the options.",
|
93 |
+
// },
|
94 |
+
//]),
|
95 |
+
//
|
96 |
+
//MUSR: createTooltipContent("Multistep Soft Reasoning (MuSR):", [
|
97 |
+
// {
|
98 |
+
// label: "Scope",
|
99 |
+
// description: "Reasoning and understanding on/of long texts",
|
100 |
+
// subItems: [
|
101 |
+
// "Language understanding",
|
102 |
+
// "Reasoning capabilities",
|
103 |
+
// "Long context reasoning",
|
104 |
+
// ],
|
105 |
+
// },
|
106 |
+
// {
|
107 |
+
// label: "Scoring: Accuracy",
|
108 |
+
// description:
|
109 |
+
// "Was the correct choice selected among the options.",
|
110 |
+
// },
|
111 |
+
//]),
|
112 |
+
//
|
113 |
+
//MMLU_PRO: createTooltipContent(
|
114 |
+
// "Massive Multitask Language Understanding - Professional (MMLU-Pro):",
|
115 |
+
// [
|
116 |
+
// {
|
117 |
+
// label: "Coverage",
|
118 |
+
// description: "Expertly reviewed multichoice questions across domains, for example:",
|
119 |
+
// subItems: [
|
120 |
+
// "Medicine and healthcare",
|
121 |
+
// "Law and ethics",
|
122 |
+
// "Engineering",
|
123 |
+
// "Mathematics",
|
124 |
+
// ],
|
125 |
+
// },
|
126 |
+
// {
|
127 |
+
// label: "Scoring: Accuracy",
|
128 |
+
// description:
|
129 |
+
// "Was the correct choice selected among the options.",
|
130 |
+
// },
|
131 |
+
// ]
|
132 |
+
//),
|
133 |
+
//
|
134 |
+
//ARCHITECTURE: createTooltipContent("Model Architecture Information:", [
|
135 |
+
// {
|
136 |
+
// label: "Definition",
|
137 |
+
// description: "The fundamental structure and design of the model",
|
138 |
+
// subItems: [
|
139 |
+
// "Pretrained: Foundational models, initially trained on large datasets without task-specific tuning, serving as a versatile base for further development.",
|
140 |
+
// "Continuously Pretrained: Base models trained with a data mix evolving as the model is trained, with the addition of specialized data during the last training steps.",
|
141 |
+
// "Fine-tuned: Base models, fine-tuned on specialised domain data (legal, medical, ...), and optimized for particular tasks.",
|
142 |
+
// "Chat: Models fine-tuned with IFT, RLHF, DPO, and other techniques, to handle conversational contexts effectively.",
|
143 |
+
// "Merged: Combining multiple models through weights averaging or similar methods.",
|
144 |
+
// "Multimodal: Models which can handle several modalities (text & image/audio/video/...). We only evaluate the text capabilities.",
|
145 |
+
// ],
|
146 |
+
// },
|
147 |
+
// {
|
148 |
+
// label: "Impact",
|
149 |
+
// description: "How architecture affects model capabilities",
|
150 |
+
// subItems: [
|
151 |
+
// "Base models are expected to perform less well on instruction following evaluations, like IFEval.",
|
152 |
+
// "Fine-tuned and chat models can be more verbose and more chatty than base models.",
|
153 |
+
// "Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
|
154 |
+
// ],
|
155 |
+
// },
|
156 |
+
//]),
|
157 |
+
//
|
158 |
+
//PRECISION: createTooltipContent("Numerical Precision Format:", [
|
159 |
+
// {
|
160 |
+
// label: "Overview",
|
161 |
+
// description:
|
162 |
+
// "Data format used to store model weights and perform computations",
|
163 |
+
// subItems: [
|
164 |
+
// "bfloat16: Half precision (Brain Float format), good for stability",
|
165 |
+
// "float16: Half precision",
|
166 |
+
// "8bit/4bit: Quantized formats, for efficiency",
|
167 |
+
// "GPTQ/AWQ: Quantized methods",
|
168 |
+
// ],
|
169 |
+
// },
|
170 |
+
// {
|
171 |
+
// label: "Impact",
|
172 |
+
// description: "How precision affects model deployment",
|
173 |
+
// subItems: [
|
174 |
+
// "Higher precision = better accuracy but more memory usage",
|
175 |
+
// "Lower precision = faster inference and smaller size",
|
176 |
+
// "Trade-off between model quality and resource usage",
|
177 |
+
// ],
|
178 |
+
// },
|
179 |
+
//]),
|
180 |
+
//
|
181 |
+
//FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
182 |
+
// {
|
183 |
+
// label: "Filters",
|
184 |
+
// subItems: [
|
185 |
+
// "Mixture of Expert: Uses a MoE architecture",
|
186 |
+
// "Merged models: Created by averaging other models",
|
187 |
+
// "Contaminated: Flagged by users from the community for (possibly accidental) cheating",
|
188 |
+
// "Unavailable: No longer on the hub (private, deleted) or missing a license tag",
|
189 |
+
// ],
|
190 |
+
// },
|
191 |
+
// {
|
192 |
+
// label: "Purpose",
|
193 |
+
// description: "Why do people want to hide these models?",
|
194 |
+
// subItems: [
|
195 |
+
// "Mixture of Experts: These models can be too parameter heavy",
|
196 |
+
// "Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
|
197 |
+
// "Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
|
198 |
+
// ],
|
199 |
+
// },
|
200 |
+
//]),
|
201 |
+
//
|
202 |
+
//PARAMETERS: createTooltipContent("Model Parameters:", [
|
203 |
+
// {
|
204 |
+
// label: "Measurement",
|
205 |
+
// description: "Total number of trainable parameters in billions",
|
206 |
+
// subItems: [
|
207 |
+
// "Indicates model capacity and complexity",
|
208 |
+
// "Correlates with computational requirements",
|
209 |
+
// "Influences memory usage and inference speed",
|
210 |
+
// ],
|
211 |
+
// },
|
212 |
+
//]),
|
213 |
+
//
|
214 |
+
//LICENSE: createTooltipContent("Model License Information:", [
|
215 |
+
// {
|
216 |
+
// label: "Importance",
|
217 |
+
// description: "Legal terms governing model usage and distribution",
|
218 |
+
// subItems: [
|
219 |
+
// "Commercial vs non-commercial use",
|
220 |
+
// "Attribution requirements",
|
221 |
+
// "Modification and redistribution rights",
|
222 |
+
// "Liability and warranty terms",
|
223 |
+
// ],
|
224 |
+
// },
|
225 |
+
//]),
|
226 |
+
//
|
227 |
+
//CO2_COST: createTooltipContent("Carbon Dioxide Emissions:", [
|
228 |
+
// {
|
229 |
+
// label: "What is it?",
|
230 |
+
// description: "CO₂ emissions of the model evaluation ",
|
231 |
+
// subItems: [
|
232 |
+
// "Only focuses on model inference for our specific setup",
|
233 |
+
// "Considers data center location and energy mix",
|
234 |
+
// "Allows equivalent comparision of models on our use case",
|
235 |
+
// ],
|
236 |
+
// },
|
237 |
+
// {
|
238 |
+
// label: "Why it matters",
|
239 |
+
// description: "Environmental impact of AI model training",
|
240 |
+
// subItems: [
|
241 |
+
// "Large models can have significant carbon footprints",
|
242 |
+
// "Helps make informed choices about model selection",
|
243 |
+
// ],
|
244 |
+
// },
|
245 |
+
// {
|
246 |
+
// label: "Learn more",
|
247 |
+
// description:
|
248 |
+
// "For detailed information about our CO₂ calculation methodology, visit:",
|
249 |
+
// subItems: [
|
250 |
+
// <a
|
251 |
+
// href="https://huggingface.co/docs/leaderboards/open_llm_leaderboard/emissions"
|
252 |
+
// target="_blank"
|
253 |
+
// rel="noopener noreferrer"
|
254 |
+
// style={{ color: "#90caf9" }}
|
255 |
+
// >
|
256 |
+
// Carbon Emissions Documentation ↗
|
257 |
+
// </a>,
|
258 |
+
// ],
|
259 |
+
// },
|
260 |
+
//]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
};
|
262 |
|
263 |
export const UI_TOOLTIPS = {
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useLeaderboardData.js
CHANGED
@@ -62,10 +62,11 @@ export const useLeaderboardData = () => {
|
|
62 |
export const useLeaderboardProcessing = () => {
|
63 |
const { state, actions } = useLeaderboard();
|
64 |
const [sorting, setSorting] = useState([
|
65 |
-
{ id: "
|
66 |
]);
|
67 |
|
68 |
const memoizedData = useMemo(() => state.models, [state.models]);
|
|
|
69 |
const memoizedFilters = useMemo(
|
70 |
() => ({
|
71 |
search: state.filters.search,
|
@@ -112,6 +113,8 @@ export const useLeaderboardProcessing = () => {
|
|
112 |
memoizedFilters.isOfficialProviderActive
|
113 |
);
|
114 |
|
|
|
|
|
115 |
return {
|
116 |
table,
|
117 |
minAverage,
|
|
|
62 |
export const useLeaderboardProcessing = () => {
|
63 |
const { state, actions } = useLeaderboard();
|
64 |
const [sorting, setSorting] = useState([
|
65 |
+
{ id: "id", desc: true },
|
66 |
]);
|
67 |
|
68 |
const memoizedData = useMemo(() => state.models, [state.models]);
|
69 |
+
console.log({memoizedData});
|
70 |
const memoizedFilters = useMemo(
|
71 |
() => ({
|
72 |
search: state.filters.search,
|
|
|
113 |
memoizedFilters.isOfficialProviderActive
|
114 |
);
|
115 |
|
116 |
+
console.log({columns});
|
117 |
+
|
118 |
return {
|
119 |
table,
|
120 |
minAverage,
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js
CHANGED
@@ -639,42 +639,42 @@ export const createColumns = (
|
|
639 |
},
|
640 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["id"],
|
641 |
},
|
642 |
-
{
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
},
|
678 |
];
|
679 |
const createScoreCell = (getValue, row, field) => {
|
680 |
const value = getValue();
|
@@ -751,59 +751,59 @@ export const createColumns = (
|
|
751 |
|
752 |
const evaluationColumns = [
|
753 |
{
|
754 |
-
accessorKey: "evaluations.
|
755 |
-
header: createHeaderCell("
|
756 |
-
cell: ({ row, getValue }) =>
|
757 |
-
createScoreCell(getValue, row, "evaluations.ifeval.normalized_score"),
|
758 |
-
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
759 |
-
"evaluations.ifeval.normalized_score"
|
760 |
-
],
|
761 |
-
},
|
762 |
-
{
|
763 |
-
accessorKey: "evaluations.bbh.normalized_score",
|
764 |
-
header: createHeaderCell("BBH", COLUMN_TOOLTIPS.BBH),
|
765 |
-
cell: ({ row, getValue }) =>
|
766 |
-
createScoreCell(getValue, row, "evaluations.bbh.normalized_score"),
|
767 |
-
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
768 |
-
"evaluations.bbh.normalized_score"
|
769 |
-
],
|
770 |
-
},
|
771 |
-
{
|
772 |
-
accessorKey: "evaluations.math.normalized_score",
|
773 |
-
header: createHeaderCell("MATH", COLUMN_TOOLTIPS.MATH),
|
774 |
-
cell: ({ row, getValue }) =>
|
775 |
-
createScoreCell(getValue, row, "evaluations.math.normalized_score"),
|
776 |
-
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
777 |
-
"evaluations.math.normalized_score"
|
778 |
-
],
|
779 |
-
},
|
780 |
-
{
|
781 |
-
accessorKey: "evaluations.gpqa.normalized_score",
|
782 |
-
header: createHeaderCell("GPQA", COLUMN_TOOLTIPS.GPQA),
|
783 |
-
cell: ({ row, getValue }) =>
|
784 |
-
createScoreCell(getValue, row, "evaluations.gpqa.normalized_score"),
|
785 |
-
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
786 |
-
"evaluations.gpqa.normalized_score"
|
787 |
-
],
|
788 |
-
},
|
789 |
-
{
|
790 |
-
accessorKey: "evaluations.musr.normalized_score",
|
791 |
-
header: createHeaderCell("MUSR", COLUMN_TOOLTIPS.MUSR),
|
792 |
cell: ({ row, getValue }) =>
|
793 |
-
createScoreCell(getValue, row, "evaluations.
|
794 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
795 |
-
"evaluations.
|
796 |
],
|
797 |
},
|
798 |
{
|
799 |
-
accessorKey: "evaluations.
|
800 |
-
header: createHeaderCell("
|
801 |
cell: ({ row, getValue }) =>
|
802 |
-
createScoreCell(getValue, row, "evaluations.
|
803 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
804 |
-
"evaluations.
|
805 |
],
|
806 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
807 |
];
|
808 |
|
809 |
const optionalColumns = [
|
|
|
639 |
},
|
640 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["id"],
|
641 |
},
|
642 |
+
//{
|
643 |
+
// accessorKey: "model.average_score",
|
644 |
+
// header: createHeaderCell("Average", COLUMN_TOOLTIPS.AVERAGE),
|
645 |
+
// cell: ({ row, getValue }) =>
|
646 |
+
// createScoreCell(getValue, row, "model.average_score"),
|
647 |
+
// size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.average_score"],
|
648 |
+
// meta: {
|
649 |
+
// headerStyle: {
|
650 |
+
// borderLeft: (theme) =>
|
651 |
+
// `2px solid ${alpha(
|
652 |
+
// theme.palette.divider,
|
653 |
+
// theme.palette.mode === "dark" ? 0.1 : 0.2
|
654 |
+
// )}`,
|
655 |
+
// borderRight: (theme) =>
|
656 |
+
// `2px solid ${alpha(
|
657 |
+
// theme.palette.divider,
|
658 |
+
// theme.palette.mode === "dark" ? 0.1 : 0.2
|
659 |
+
// )}`,
|
660 |
+
// },
|
661 |
+
// cellStyle: (value) => ({
|
662 |
+
// position: "relative",
|
663 |
+
// overflow: "hidden",
|
664 |
+
// padding: "8px 16px",
|
665 |
+
// borderLeft: (theme) =>
|
666 |
+
// `2px solid ${alpha(
|
667 |
+
// theme.palette.divider,
|
668 |
+
// theme.palette.mode === "dark" ? 0.1 : 0.2
|
669 |
+
// )}`,
|
670 |
+
// borderRight: (theme) =>
|
671 |
+
// `2px solid ${alpha(
|
672 |
+
// theme.palette.divider,
|
673 |
+
// theme.palette.mode === "dark" ? 0.1 : 0.2
|
674 |
+
// )}`,
|
675 |
+
// }),
|
676 |
+
// },
|
677 |
+
//},
|
678 |
];
|
679 |
const createScoreCell = (getValue, row, field) => {
|
680 |
const value = getValue();
|
|
|
751 |
|
752 |
const evaluationColumns = [
|
753 |
{
|
754 |
+
accessorKey: "evaluations.safetensors.value",
|
755 |
+
header: createHeaderCell("Safetensors usage", COLUMN_TOOLTIPS.IFEVAL),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
cell: ({ row, getValue }) =>
|
757 |
+
createScoreCell(getValue, row, "evaluations.safetendors.value"),
|
758 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
759 |
+
"evaluations.safetendors.value"
|
760 |
],
|
761 |
},
|
762 |
{
|
763 |
+
accessorKey: "evaluations.secure_coding.value",
|
764 |
+
header: createHeaderCell("Secure Coding", COLUMN_TOOLTIPS.BBH),
|
765 |
cell: ({ row, getValue }) =>
|
766 |
+
createScoreCell(getValue, row, "evaluations.secure_coding.value"),
|
767 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
768 |
+
"evaluations.secure_coding.value"
|
769 |
],
|
770 |
},
|
771 |
+
//{
|
772 |
+
// accessorKey: "evaluations.math.normalized_score",
|
773 |
+
// header: createHeaderCell("MATH", COLUMN_TOOLTIPS.MATH),
|
774 |
+
// cell: ({ row, getValue }) =>
|
775 |
+
// createScoreCell(getValue, row, "evaluations.math.normalized_score"),
|
776 |
+
// size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
777 |
+
// "evaluations.math.normalized_score"
|
778 |
+
// ],
|
779 |
+
//},
|
780 |
+
//{
|
781 |
+
// accessorKey: "evaluations.gpqa.normalized_score",
|
782 |
+
// header: createHeaderCell("GPQA", COLUMN_TOOLTIPS.GPQA),
|
783 |
+
// cell: ({ row, getValue }) =>
|
784 |
+
// createScoreCell(getValue, row, "evaluations.gpqa.normalized_score"),
|
785 |
+
// size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
786 |
+
// "evaluations.gpqa.normalized_score"
|
787 |
+
// ],
|
788 |
+
//},
|
789 |
+
//{
|
790 |
+
// accessorKey: "evaluations.musr.normalized_score",
|
791 |
+
// header: createHeaderCell("MUSR", COLUMN_TOOLTIPS.MUSR),
|
792 |
+
// cell: ({ row, getValue }) =>
|
793 |
+
// createScoreCell(getValue, row, "evaluations.musr.normalized_score"),
|
794 |
+
// size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
795 |
+
// "evaluations.musr.normalized_score"
|
796 |
+
// ],
|
797 |
+
//},
|
798 |
+
//{
|
799 |
+
// accessorKey: "evaluations.mmlu_pro.normalized_score",
|
800 |
+
// header: createHeaderCell("MMLU-PRO", COLUMN_TOOLTIPS.MMLU_PRO),
|
801 |
+
// cell: ({ row, getValue }) =>
|
802 |
+
// createScoreCell(getValue, row, "evaluations.mmlu_pro.normalized_score"),
|
803 |
+
// size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
804 |
+
// "evaluations.mmlu_pro.normalized_score"
|
805 |
+
// ],
|
806 |
+
//},
|
807 |
];
|
808 |
|
809 |
const optionalColumns = [
|