Spaces:
Build error
Build error
use huggingface-cli to download
Browse files- app.py +59 -50
- requirements.txt +4 -3
app.py
CHANGED
@@ -23,6 +23,51 @@ login(token=os.getenv('HF_TOKEN'))
|
|
23 |
device = torch.device('cuda')
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
@spaces.GPU
|
27 |
def generate_image(
|
28 |
model_name,
|
@@ -41,71 +86,35 @@ def generate_image(
|
|
41 |
torch.cuda.empty_cache()
|
42 |
dtype = torch.float16
|
43 |
set_seed(seed)
|
|
|
|
|
44 |
if model_name == 'sd35':
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
-
model_nf4 = SD3Transformer2DModel.from_pretrained(
|
51 |
-
"stabilityai/stable-diffusion-3.5-large",
|
52 |
-
subfolder="transformer",
|
53 |
-
quantization_config=nf4_config,
|
54 |
-
torch_dtype=torch.bfloat16
|
55 |
-
)
|
56 |
-
|
57 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(
|
58 |
-
"stabilityai/stable-diffusion-3.5-large",
|
59 |
-
transformer=model_nf4,
|
60 |
-
torch_dtype=torch.bfloat16,
|
61 |
-
)
|
62 |
-
|
63 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
64 |
-
inverse_scheduler = FlowMatchEulerInverseScheduler.from_pretrained("stabilityai/stable-diffusion-3.5-large",
|
65 |
-
subfolder='scheduler')
|
66 |
-
pipe.inv_scheduler = inverse_scheduler
|
67 |
-
|
68 |
-
elif model_name == "sdxl":
|
69 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
70 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
71 |
-
torch_dtype=torch.float16,
|
72 |
-
variant="fp16",
|
73 |
-
use_safetensors=True
|
74 |
-
).to("cuda")
|
75 |
-
|
76 |
-
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
77 |
-
inverse_scheduler = DDIMInverseScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
|
78 |
-
subfolder='scheduler')
|
79 |
-
pipe.inv_scheduler = inverse_scheduler
|
80 |
|
81 |
pipe.to(device)
|
82 |
pipe.enable_model_cpu_offload()
|
83 |
-
|
|
|
84 |
# TODO: load noise model
|
85 |
if method == 'core' or method == 'z-core':
|
86 |
from diffusion_pipeline.refine_model import PromptSD35Net, PromptSDXLNet
|
87 |
from diffusion_pipeline.lora import replace_linear_with_lora, lora_true
|
88 |
|
89 |
if model_name == 'sd35':
|
90 |
-
refine_model = PromptSD35Net()
|
91 |
replace_linear_with_lora(refine_model, rank=64, alpha=1.0, number_of_lora=28)
|
92 |
lora_true(refine_model, lora_idx=0)
|
93 |
-
|
94 |
-
os.makedirs('./weights', exist_ok=True)
|
95 |
-
if not os.path.exists('./weights/sd35_noise_model.pth'):
|
96 |
-
os.system('wget https://huggingface.co/sst12345/CoRe2/resolve/main/weights/sd35_noise_model.pth')
|
97 |
-
os.system('mv sd35_noise_model.pth ./weights/')
|
98 |
-
checkpoint = torch.load('./weights/sd35_noise_model.pth', map_location='cpu')
|
99 |
refine_model.load_state_dict(checkpoint)
|
100 |
elif model_name == 'sdxl':
|
101 |
refine_model = PromptSDXLNet()
|
102 |
replace_linear_with_lora(refine_model, rank=48, alpha=1.0, number_of_lora=50)
|
103 |
lora_true(refine_model, lora_idx=0)
|
104 |
-
|
105 |
-
if not os.path.exists('./weights/sdxl_noise_model.pth'):
|
106 |
-
os.system('wget https://huggingface.co/sst12345/CoRe2/resolve/main/weights/sdxl_noise_model.pth')
|
107 |
-
os.system('mv sdxl_noise_model.pth ./weights/')
|
108 |
-
checkpoint = torch.load('./weights/sdxl_noise_model.pth', map_location='cpu')
|
109 |
refine_model.load_state_dict(checkpoint)
|
110 |
|
111 |
print("Load Lora Success")
|
@@ -235,7 +244,7 @@ if __name__ == '__main__':
|
|
235 |
gr.Slider(minimum=1024, maximum=2048, value=1024, label="Size") # 设置默认大小为 1024
|
236 |
],
|
237 |
outputs=gr.Image(type="filepath"), # 修改了type参数
|
238 |
-
title="Image Generation with CoRe^2"
|
239 |
)
|
240 |
-
iface.launch()
|
241 |
|
|
|
23 |
device = torch.device('cuda')
|
24 |
|
25 |
|
26 |
+
|
27 |
+
# Load models outside the function to avoid reloading every time
|
28 |
+
def load_models():
|
29 |
+
# Load sd35 model
|
30 |
+
nf4_config = BitsAndBytesConfig(
|
31 |
+
load_in_4bit=True,
|
32 |
+
bnb_4bit_quant_type="nf4",
|
33 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
34 |
+
)
|
35 |
+
model_nf4 = SD3Transformer2DModel.from_pretrained(
|
36 |
+
"stabilityai/stable-diffusion-3.5-large",
|
37 |
+
subfolder="transformer",
|
38 |
+
quantization_config=nf4_config,
|
39 |
+
torch_dtype=torch.bfloat16
|
40 |
+
)
|
41 |
+
pipe_sd35 = StableDiffusion3Pipeline.from_pretrained(
|
42 |
+
"stabilityai/stable-diffusion-3.5-large",
|
43 |
+
transformer=model_nf4,
|
44 |
+
torch_dtype=torch.bfloat16,
|
45 |
+
)
|
46 |
+
pipe_sd35.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe_sd35.scheduler.config)
|
47 |
+
inverse_scheduler_sd35 = FlowMatchEulerInverseScheduler.from_pretrained(
|
48 |
+
"stabilityai/stable-diffusion-3.5-large",
|
49 |
+
subfolder='scheduler'
|
50 |
+
)
|
51 |
+
pipe_sd35.inv_scheduler = inverse_scheduler_sd35
|
52 |
+
|
53 |
+
# Load sdxl model
|
54 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
55 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
variant="fp16",
|
58 |
+
use_safetensors=True
|
59 |
+
).to("cuda")
|
60 |
+
pipe_sdxl.scheduler = DDIMScheduler.from_config(pipe_sdxl.scheduler.config)
|
61 |
+
inverse_scheduler_sdxl = DDIMInverseScheduler.from_pretrained(
|
62 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
63 |
+
subfolder='scheduler'
|
64 |
+
)
|
65 |
+
pipe_sdxl.inv_scheduler = inverse_scheduler_sdxl
|
66 |
+
|
67 |
+
return pipe_sd35, pipe_sdxl
|
68 |
+
|
69 |
+
pipe_sd35, pipe_sdxl = load_models()
|
70 |
+
|
71 |
@spaces.GPU
|
72 |
def generate_image(
|
73 |
model_name,
|
|
|
86 |
torch.cuda.empty_cache()
|
87 |
dtype = torch.float16
|
88 |
set_seed(seed)
|
89 |
+
|
90 |
+
# Select the appropriate pipeline
|
91 |
if model_name == 'sd35':
|
92 |
+
pipe = pipe_sd35
|
93 |
+
elif model_name == 'sdxl':
|
94 |
+
pipe = pipe_sdxl
|
95 |
+
else:
|
96 |
+
raise ValueError("Invalid model name")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
pipe.to(device)
|
99 |
pipe.enable_model_cpu_offload()
|
100 |
+
# os.makedirs('./weights', exist_ok=True)
|
101 |
+
os.system('huggingface-cli download sst12345/CoRe2 weights/sd35_noise_model.pth weights/sdxl_noise_model.pth --local-dir ./weights')
|
102 |
# TODO: load noise model
|
103 |
if method == 'core' or method == 'z-core':
|
104 |
from diffusion_pipeline.refine_model import PromptSD35Net, PromptSDXLNet
|
105 |
from diffusion_pipeline.lora import replace_linear_with_lora, lora_true
|
106 |
|
107 |
if model_name == 'sd35':
|
108 |
+
refine_model = PromptSD35Net().to(device)
|
109 |
replace_linear_with_lora(refine_model, rank=64, alpha=1.0, number_of_lora=28)
|
110 |
lora_true(refine_model, lora_idx=0)
|
111 |
+
checkpoint = torch.load('./weights/weights/sd35_noise_model.pth', map_location='cpu')
|
|
|
|
|
|
|
|
|
|
|
112 |
refine_model.load_state_dict(checkpoint)
|
113 |
elif model_name == 'sdxl':
|
114 |
refine_model = PromptSDXLNet()
|
115 |
replace_linear_with_lora(refine_model, rank=48, alpha=1.0, number_of_lora=50)
|
116 |
lora_true(refine_model, lora_idx=0)
|
117 |
+
checkpoint = torch.load('./weights/weights/sdxl_noise_model.pth', map_location='cpu')
|
|
|
|
|
|
|
|
|
118 |
refine_model.load_state_dict(checkpoint)
|
119 |
|
120 |
print("Load Lora Success")
|
|
|
244 |
gr.Slider(minimum=1024, maximum=2048, value=1024, label="Size") # 设置默认大小为 1024
|
245 |
],
|
246 |
outputs=gr.Image(type="filepath"), # 修改了type参数
|
247 |
+
title="Image Generation with CoRe^2",
|
248 |
)
|
249 |
+
iface.launch(share=True)
|
250 |
|
requirements.txt
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
diffusers
|
2 |
-
transformers
|
3 |
einops
|
4 |
wandb
|
5 |
-
accelerate
|
6 |
pandas
|
7 |
imageio
|
8 |
gradio
|
9 |
sentencepiece
|
|
|
10 |
bitsandbytes
|
11 |
imageio-ffmpeg
|
12 |
omegaconf
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
transformers==4.46.1
|
3 |
einops
|
4 |
wandb
|
5 |
+
accelerate==1.0.1
|
6 |
pandas
|
7 |
imageio
|
8 |
gradio
|
9 |
sentencepiece
|
10 |
+
huggingface_hub
|
11 |
bitsandbytes
|
12 |
imageio-ffmpeg
|
13 |
omegaconf
|