Spaces:
Build error
Build error
submit app.py
Browse files- LICENSE +201 -0
- app.py +239 -0
- diffusion_pipeline/gemma.py +53 -0
- diffusion_pipeline/lora.py +62 -0
- diffusion_pipeline/refine_model.py +312 -0
- diffusion_pipeline/sd35_pipeline.py +0 -0
- diffusion_pipeline/sdxl_pipeline.py +0 -0
- requirements.txt +14 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import csv
|
5 |
+
import random
|
6 |
+
import argparse
|
7 |
+
import torch
|
8 |
+
import os
|
9 |
+
import torch.distributed as dist
|
10 |
+
import gradio as gr
|
11 |
+
from PIL import Image
|
12 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
13 |
+
import spaces
|
14 |
+
from accelerate.utils import set_seed
|
15 |
+
|
16 |
+
from diffusion_pipeline.sd35_pipeline import StableDiffusion3Pipeline, FlowMatchEulerInverseScheduler
|
17 |
+
from diffusion_pipeline.sdxl_pipeline import StableDiffusionXLPipeline
|
18 |
+
from diffusers import BitsAndBytesConfig, SD3Transformer2DModel
|
19 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, DDIMInverseScheduler, DDIMScheduler
|
20 |
+
|
21 |
+
device = torch.device('cuda')
|
22 |
+
|
23 |
+
|
24 |
+
@spaces.GPU
|
25 |
+
def generate_image(
|
26 |
+
model_name,
|
27 |
+
seed,
|
28 |
+
num_steps,
|
29 |
+
guidance_scale,
|
30 |
+
inv_cfg,
|
31 |
+
w2s_guidance,
|
32 |
+
end_timesteps,
|
33 |
+
prompt,
|
34 |
+
method,
|
35 |
+
size,
|
36 |
+
):
|
37 |
+
try:
|
38 |
+
# 根据传入的参数生成图像
|
39 |
+
torch.cuda.empty_cache()
|
40 |
+
dtype = torch.float16
|
41 |
+
set_seed(seed)
|
42 |
+
if model_name == 'sd35':
|
43 |
+
nf4_config = BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_quant_type="nf4",
|
46 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
47 |
+
)
|
48 |
+
model_nf4 = SD3Transformer2DModel.from_pretrained(
|
49 |
+
"stabilityai/stable-diffusion-3.5-large",
|
50 |
+
subfolder="transformer",
|
51 |
+
quantization_config=nf4_config,
|
52 |
+
torch_dtype=torch.bfloat16
|
53 |
+
)
|
54 |
+
|
55 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
56 |
+
"stabilityai/stable-diffusion-3.5-large",
|
57 |
+
transformer=model_nf4,
|
58 |
+
torch_dtype=torch.bfloat16,
|
59 |
+
)
|
60 |
+
|
61 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
62 |
+
inverse_scheduler = FlowMatchEulerInverseScheduler.from_pretrained("stabilityai/stable-diffusion-3.5-large",
|
63 |
+
subfolder='scheduler')
|
64 |
+
pipe.inv_scheduler = inverse_scheduler
|
65 |
+
|
66 |
+
elif model_name == "sdxl":
|
67 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
68 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
variant="fp16",
|
71 |
+
use_safetensors=True
|
72 |
+
).to("cuda")
|
73 |
+
|
74 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
75 |
+
inverse_scheduler = DDIMInverseScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
|
76 |
+
subfolder='scheduler')
|
77 |
+
pipe.inv_scheduler = inverse_scheduler
|
78 |
+
|
79 |
+
pipe.to(device)
|
80 |
+
pipe.enable_model_cpu_offload()
|
81 |
+
|
82 |
+
# TODO: load noise model
|
83 |
+
if method == 'core' or method == 'z-core':
|
84 |
+
from diffusion_pipeline.refine_model import PromptSD35Net, PromptSDXLNet
|
85 |
+
from diffusion_pipeline.lora import replace_linear_with_lora, lora_true
|
86 |
+
|
87 |
+
if model_name == 'sd35':
|
88 |
+
refine_model = PromptSD35Net()
|
89 |
+
replace_linear_with_lora(refine_model, rank=64, alpha=1.0, number_of_lora=28)
|
90 |
+
lora_true(refine_model, lora_idx=0)
|
91 |
+
|
92 |
+
os.makedirs('./weights', exist_ok=True)
|
93 |
+
if not os.path.exists('./weights/sd35_noise_model.pth'):
|
94 |
+
os.system('wget https://huggingface.co/sst12345/CoRe2/resolve/main/weights/sd35_noise_model.pth')
|
95 |
+
os.system('mv sd35_noise_model.pth ./weights/')
|
96 |
+
checkpoint = torch.load('./weights/sd35_noise_model.pth', map_location='cpu')
|
97 |
+
refine_model.load_state_dict(checkpoint)
|
98 |
+
elif model_name == 'sdxl':
|
99 |
+
refine_model = PromptSDXLNet()
|
100 |
+
replace_linear_with_lora(refine_model, rank=48, alpha=1.0, number_of_lora=50)
|
101 |
+
lora_true(refine_model, lora_idx=0)
|
102 |
+
os.makedirs('./weights', exist_ok=True)
|
103 |
+
if not os.path.exists('./weights/sdxl_noise_model.pth'):
|
104 |
+
os.system('wget https://huggingface.co/sst12345/CoRe2/resolve/main/weights/sdxl_noise_model.pth')
|
105 |
+
os.system('mv sdxl_noise_model.pth ./weights/')
|
106 |
+
checkpoint = torch.load('./weights/sdxl_noise_model.pth', map_location='cpu')
|
107 |
+
refine_model.load_state_dict(checkpoint)
|
108 |
+
|
109 |
+
print("Load Lora Success")
|
110 |
+
refine_model = refine_model.to(device)
|
111 |
+
refine_model = refine_model.to(torch.bfloat16)
|
112 |
+
|
113 |
+
# 根据模型类型设置形状
|
114 |
+
if model_name == 'sdxl':
|
115 |
+
shape = (1, 4, size // 8, size // 8)
|
116 |
+
else:
|
117 |
+
shape = (1, 16, size // 8, size // 8)
|
118 |
+
|
119 |
+
start_latents = torch.randn(shape, dtype=dtype).to(device)
|
120 |
+
|
121 |
+
# 根据方法选择生成图像
|
122 |
+
if model_name == 'sdxl':
|
123 |
+
if method == 'core':
|
124 |
+
output = pipe.core(
|
125 |
+
prompt=prompt,
|
126 |
+
guidance_scale=guidance_scale,
|
127 |
+
num_inference_steps=num_steps,
|
128 |
+
latents=start_latents,
|
129 |
+
return_dict=False,
|
130 |
+
refine_model=refine_model,
|
131 |
+
lora_true=lora_true,
|
132 |
+
end_timesteps=end_timesteps,
|
133 |
+
w2s_guidance=w2s_guidance)[0][0]
|
134 |
+
elif method == 'zigzag':
|
135 |
+
output = pipe.zigzag(
|
136 |
+
prompt=prompt,
|
137 |
+
guidance_scale=guidance_scale,
|
138 |
+
latents=start_latents,
|
139 |
+
return_dict=False,
|
140 |
+
num_inference_steps=num_steps,
|
141 |
+
inv_cfg=inv_cfg)[0][0]
|
142 |
+
elif method == 'z-core':
|
143 |
+
output = pipe.z_core(
|
144 |
+
prompt=prompt,
|
145 |
+
guidance_scale=guidance_scale,
|
146 |
+
num_inference_steps=num_steps,
|
147 |
+
latents=start_latents,
|
148 |
+
return_dict=False,
|
149 |
+
refine_model=refine_model,
|
150 |
+
lora_true=lora_true,
|
151 |
+
end_timesteps=end_timesteps,
|
152 |
+
w2s_guidance=w2s_guidance,
|
153 |
+
inv_cfg=inv_cfg)[0][0]
|
154 |
+
elif method == 'standard':
|
155 |
+
output = pipe(
|
156 |
+
prompt=prompt,
|
157 |
+
guidance_scale=guidance_scale,
|
158 |
+
latents=start_latents,
|
159 |
+
return_dict=False,
|
160 |
+
num_inference_steps=num_steps)[0][0]
|
161 |
+
else:
|
162 |
+
raise ValueError("Invalid method")
|
163 |
+
else:
|
164 |
+
if method == 'core':
|
165 |
+
output = pipe.core(
|
166 |
+
prompt=prompt,
|
167 |
+
guidance_scale=guidance_scale,
|
168 |
+
num_inference_steps=num_steps,
|
169 |
+
latents=start_latents,
|
170 |
+
max_sequence_length=512,
|
171 |
+
return_dict=False,
|
172 |
+
refine_model=refine_model,
|
173 |
+
lora_true=lora_true,
|
174 |
+
end_timesteps=end_timesteps,
|
175 |
+
w2s_guidance=w2s_guidance)[0][0]
|
176 |
+
elif method == 'zigzag':
|
177 |
+
output = pipe.zigzag(
|
178 |
+
prompt=prompt,
|
179 |
+
max_sequence_length=512,
|
180 |
+
guidance_scale=guidance_scale,
|
181 |
+
latents=start_latents,
|
182 |
+
return_dict=False,
|
183 |
+
num_inference_steps=num_steps,
|
184 |
+
inv_cfg=inv_cfg)[0][0]
|
185 |
+
elif method == 'z-core':
|
186 |
+
output = pipe.z_core(
|
187 |
+
prompt=prompt,
|
188 |
+
guidance_scale=guidance_scale,
|
189 |
+
num_inference_steps=num_steps,
|
190 |
+
latents=start_latents,
|
191 |
+
return_dict=False,
|
192 |
+
max_sequence_length=512,
|
193 |
+
refine_model=refine_model,
|
194 |
+
lora_true=lora_true,
|
195 |
+
end_timesteps=end_timesteps,
|
196 |
+
w2s_guidance=w2s_guidance)[0][0]
|
197 |
+
elif method == 'standard':
|
198 |
+
output = pipe(
|
199 |
+
prompt=prompt,
|
200 |
+
guidance_scale=guidance_scale,
|
201 |
+
latents=start_latents,
|
202 |
+
return_dict=False,
|
203 |
+
max_sequence_length=512,
|
204 |
+
num_inference_steps=num_steps)[0][0]
|
205 |
+
else:
|
206 |
+
raise ValueError("Invalid method")
|
207 |
+
|
208 |
+
# 将生成的图像保存为临时文件并返回
|
209 |
+
output_path = f'{model_name}_{method}.png'
|
210 |
+
output.save(output_path)
|
211 |
+
return output_path
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
print(f"An error occurred: {e}")
|
215 |
+
return None
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
if __name__ == '__main__':
|
220 |
+
# 创建Gradio接口
|
221 |
+
iface = gr.Interface(
|
222 |
+
fn=generate_image,
|
223 |
+
inputs=[
|
224 |
+
gr.Dropdown(choices=['sdxl', 'sd35'], value='sdxl', label="Model"), # 设置默认模型为 'sdxl'
|
225 |
+
gr.Slider(minimum=1, maximum=1000000, value=1, label="seed"), # 设置默认种子为 1
|
226 |
+
gr.Slider(minimum=1, maximum=100, value=50, label="Inference Steps"), # 设置默认推理步数为 50
|
227 |
+
gr.Slider(minimum=1, maximum=10, value=5.5, label="CFG"), # 设置默认CFG为 5.5
|
228 |
+
gr.Slider(minimum=-10, maximum=10, value=-1, label="Inverse CFG"), # 设置默认逆CFG为 -1
|
229 |
+
gr.Slider(minimum=1, maximum=3.5, value=2.5, label="W2S Guidance"), # 设置默认W2S指导为 2.5
|
230 |
+
gr.Slider(minimum=1, maximum=100, value=50, label="End Timesteps"), # 设置默认结束时间步为 50
|
231 |
+
gr.Textbox(label="Prompt"), # 文本框没有默认值
|
232 |
+
gr.Dropdown(choices=['standard', 'core', 'zigzag', 'z-core'], value='core', label="Method"), # 设置默认方法为 'core'
|
233 |
+
gr.Slider(minimum=1024, maximum=2048, value=1024, label="Size") # 设置默认大小为 1024
|
234 |
+
],
|
235 |
+
outputs=gr.Image(type="filepath"), # 修改了type参数
|
236 |
+
title="Image Generation with CoRe^2"
|
237 |
+
)
|
238 |
+
iface.launch()
|
239 |
+
|
diffusion_pipeline/gemma.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import AutoTokenizer, Gemma2ForTokenClassification, BitsAndBytesConfig
|
5 |
+
|
6 |
+
import os
|
7 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
8 |
+
torch.set_float32_matmul_precision("high")
|
9 |
+
|
10 |
+
def repeat_function(xs, max_length = 128):
|
11 |
+
new_xs = []
|
12 |
+
for x in xs:
|
13 |
+
if x.shape[1] >= max_length-1:
|
14 |
+
new_xs.append(x[:,:max_length-1,:])
|
15 |
+
else:
|
16 |
+
new_xs.append(x)
|
17 |
+
xs = new_xs
|
18 |
+
mean_xs = [x.mean(1,keepdim=True).expand(-1,max_length - x.shape[1],-1) for x in xs]
|
19 |
+
xs = [torch.cat([x,mean_x],1) for mean_x, x in zip(mean_xs, xs)]
|
20 |
+
return xs
|
21 |
+
|
22 |
+
class Gemma2Model(nn.Module):
|
23 |
+
def __init__(self):
|
24 |
+
super().__init__()
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b", )
|
26 |
+
self.tokenizer_max_length = 128
|
27 |
+
# quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
28 |
+
|
29 |
+
self.model = Gemma2ForTokenClassification.from_pretrained(
|
30 |
+
"google/gemma-2-2b",
|
31 |
+
# device_map="auto",
|
32 |
+
# quantization_config=quantization_config,
|
33 |
+
).float()
|
34 |
+
self.model.score = nn.Identity()
|
35 |
+
|
36 |
+
@torch.no_grad()
|
37 |
+
def forward(self, input_prompt):
|
38 |
+
input_prompt = list(input_prompt)
|
39 |
+
outputs = []
|
40 |
+
for _input_prompt in input_prompt:
|
41 |
+
input_ids = self.tokenizer(_input_prompt, add_special_tokens=False, max_length=77, return_tensors="pt").to("cuda")
|
42 |
+
_outputs = self.model(**input_ids)["logits"]
|
43 |
+
outputs.append(_outputs)
|
44 |
+
outputs = repeat_function(outputs)
|
45 |
+
outputs = torch.cat(outputs,0)
|
46 |
+
return outputs
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
model = Gemma2Model().cuda()
|
50 |
+
input_text = ["Write me a poem about Machine Learning.", "Write me a poem about Deep Learning."]
|
51 |
+
print(model(input_text))
|
52 |
+
print(model(input_text)[0].shape)
|
53 |
+
print(model(input_text).shape)
|
diffusion_pipeline/lora.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class LoRALayer(torch.nn.Module):
|
5 |
+
def __init__(self, in_dim, out_dim, rank, alpha):
|
6 |
+
super().__init__()
|
7 |
+
std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
|
8 |
+
self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev)
|
9 |
+
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
|
10 |
+
self.alpha = alpha
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
x = self.alpha * (x @ self.A @ self.B)
|
14 |
+
return x
|
15 |
+
|
16 |
+
class LinearWithLoRA(torch.nn.Module):
|
17 |
+
def __init__(self, linear, rank, alpha,
|
18 |
+
weak_lora_alpha=0.1, number_of_lora=1):
|
19 |
+
super().__init__()
|
20 |
+
self.linear = linear
|
21 |
+
self.lora = nn.ModuleList([LoRALayer(
|
22 |
+
linear.in_features, linear.out_features, rank, alpha
|
23 |
+
) for _ in range(number_of_lora)])
|
24 |
+
self.use_lora = True
|
25 |
+
self.lora_idx = 0
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
if self.use_lora:
|
29 |
+
return self.linear(x) + self.lora[self.lora_idx](x)
|
30 |
+
else:
|
31 |
+
return self.linear(x)
|
32 |
+
|
33 |
+
def replace_linear_with_lora(module, rank=64, alpha=1., tag=0, weak_lora_alpha=0.1, number_of_lora=1):
|
34 |
+
for name, child in module.named_children():
|
35 |
+
if isinstance(child, nn.Linear):
|
36 |
+
setattr(module, name, LinearWithLoRA(child, rank, alpha, weak_lora_alpha=weak_lora_alpha, number_of_lora=number_of_lora))
|
37 |
+
else:
|
38 |
+
replace_linear_with_lora(child, rank, alpha, tag, weak_lora_alpha=weak_lora_alpha, number_of_lora=number_of_lora)
|
39 |
+
|
40 |
+
|
41 |
+
def lora_false(model, lora_idx=0):
|
42 |
+
for name, module in model.named_modules():
|
43 |
+
if isinstance(module, LinearWithLoRA):
|
44 |
+
module.use_lora = False
|
45 |
+
module.lora_idx = lora_idx
|
46 |
+
|
47 |
+
def lora_true(model, lora_idx=0):
|
48 |
+
for name, module in model.named_modules():
|
49 |
+
if isinstance(module, LinearWithLoRA):
|
50 |
+
module.use_lora = True
|
51 |
+
module.lora_idx = lora_idx
|
52 |
+
for i, lora in enumerate(module.lora):
|
53 |
+
if i != lora_idx:
|
54 |
+
lora.A.requires_grad = False
|
55 |
+
lora.B.requires_grad = False
|
56 |
+
if lora.A.grad is not None:
|
57 |
+
del lora.A.grad
|
58 |
+
if lora.B.grad is not None:
|
59 |
+
del lora.B.grad
|
60 |
+
else:
|
61 |
+
lora.A.requires_grad = True
|
62 |
+
lora.B.requires_grad = True
|
diffusion_pipeline/refine_model.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import random
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
from glob import glob
|
11 |
+
import math
|
12 |
+
from PIL import Image
|
13 |
+
device = torch.device('cuda')
|
14 |
+
import numpy as np
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from diffusers.utils import logging
|
21 |
+
from diffusers.models.embeddings import PatchEmbed
|
22 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
23 |
+
from diffusers.models.attention import BasicTransformerBlock
|
24 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
25 |
+
from torchvision import transforms
|
26 |
+
|
27 |
+
def add_hook_to_module(model, module_name):
|
28 |
+
outputs = []
|
29 |
+
def hook(module, input, output):
|
30 |
+
outputs.append(output)
|
31 |
+
module = dict(model.named_modules()).get(module_name)
|
32 |
+
if module is None:
|
33 |
+
raise ValueError(f"can't find module {module_name}")
|
34 |
+
hook_handle = module.register_forward_hook(hook)
|
35 |
+
return hook_handle, outputs
|
36 |
+
|
37 |
+
class PromptSD35Net(nn.Module):
|
38 |
+
|
39 |
+
def __init__(self,
|
40 |
+
sample_size: int = 128,
|
41 |
+
patch_size: int = 2,
|
42 |
+
in_channels: int = 16,
|
43 |
+
num_layers: int = 8,
|
44 |
+
attention_head_dim: int = 64,
|
45 |
+
num_attention_heads: int = 24,
|
46 |
+
out_channels: int = 16,
|
47 |
+
pos_embed_max_size: int = 192
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.sample_size = sample_size
|
51 |
+
self.patch_size = patch_size
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.num_layers = num_layers
|
54 |
+
self.attention_head_dim = attention_head_dim
|
55 |
+
self.num_attention_heads = num_attention_heads
|
56 |
+
self.out_channels = out_channels
|
57 |
+
self.pos_embed_max_size = pos_embed_max_size
|
58 |
+
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
59 |
+
|
60 |
+
self.pos_embed = PatchEmbed(
|
61 |
+
height=self.sample_size,
|
62 |
+
width=self.sample_size,
|
63 |
+
patch_size=self.patch_size,
|
64 |
+
in_channels=self.in_channels,
|
65 |
+
embed_dim=self.inner_dim,
|
66 |
+
pos_embed_max_size=pos_embed_max_size
|
67 |
+
)
|
68 |
+
|
69 |
+
self.transformer_blocks = nn.ModuleList(
|
70 |
+
[
|
71 |
+
BasicTransformerBlock(
|
72 |
+
dim=self.inner_dim,
|
73 |
+
num_attention_heads=self.num_attention_heads,
|
74 |
+
attention_head_dim=self.attention_head_dim,
|
75 |
+
ff_inner_dim=2*self.inner_dim # mult should be 4 by default
|
76 |
+
)
|
77 |
+
for i in range(self.num_layers)
|
78 |
+
]
|
79 |
+
)
|
80 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
81 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
82 |
+
|
83 |
+
self.noise_shape = (1, 16, 128, 128) # (667, 4096)
|
84 |
+
self.pre8_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
85 |
+
self.pre16_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
86 |
+
self.pre24_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
87 |
+
|
88 |
+
self.pre8_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
89 |
+
self.pre16_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
90 |
+
self.pre24_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
91 |
+
|
92 |
+
self.last_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
93 |
+
# self.last_linear2 = nn.Sequential(nn.Linear(667, 32))
|
94 |
+
self.skip_connection2 = nn.Linear(4096, 1, bias=False)
|
95 |
+
self.skip_connection = nn.Linear(667, 32, bias=False)
|
96 |
+
self.trans_linear = nn.Linear(666+1+4096, 1536, bias=False)
|
97 |
+
nn.init.constant_(self.skip_connection.weight.data, 0)
|
98 |
+
nn.init.constant_(self.trans_linear.weight.data, 0)
|
99 |
+
nn.init.constant_(self.trans_linear.weight.data, 0)
|
100 |
+
nn.init.constant_(self.pre8_linear[-1].weight.data, 0)
|
101 |
+
nn.init.constant_(self.pre16_linear[-1].weight.data, 0)
|
102 |
+
nn.init.constant_(self.pre24_linear[-1].weight.data, 0)
|
103 |
+
nn.init.constant_(self.pre8_linear2[-1].weight.data, 0)
|
104 |
+
nn.init.constant_(self.pre16_linear2[-1].weight.data, 0)
|
105 |
+
nn.init.constant_(self.pre24_linear2[-1].weight.data, 0)
|
106 |
+
|
107 |
+
def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor:
|
108 |
+
|
109 |
+
assert noise is not None
|
110 |
+
_ori_v = _v.clone()
|
111 |
+
_v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0)
|
112 |
+
positive_embedding = _s.permute(0, 2, 1) @ _v @ _d # [2, 64, 666] [2, 64] [2, 64, 4096]
|
113 |
+
pool_embedding = _pool_embedding[:, None, :]
|
114 |
+
embedding = torch.cat([positive_embedding, pool_embedding], dim=1)
|
115 |
+
bs = noise.shape[0]
|
116 |
+
height, width = noise.shape[-2:]
|
117 |
+
embed_8 = embedding
|
118 |
+
embed_16 = embedding
|
119 |
+
embed_24 = embedding
|
120 |
+
scale_8 = self.pre8_linear2(embed_8).mean(1)
|
121 |
+
scale_16 = self.pre16_linear2(embed_16).mean(1)
|
122 |
+
scale_24 = self.pre24_linear2(embed_24).mean(1)
|
123 |
+
embed_8 = self.pre8_linear(embed_8).mean(1)
|
124 |
+
embed_16 = self.pre16_linear(embed_16).mean(1)
|
125 |
+
embed_24 = self.pre24_linear(embed_24).mean(1)
|
126 |
+
embed_last = self.last_linear(embedding).mean(1)
|
127 |
+
embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1)
|
128 |
+
skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1)
|
129 |
+
scale_skip, embed_skip = skip_embedding.chunk(2,dim=1)
|
130 |
+
|
131 |
+
ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None]
|
132 |
+
noise = self.pos_embed(noise)
|
133 |
+
noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :]
|
134 |
+
scale_list = [scale_16, scale_24]
|
135 |
+
embed_list = [embed_16, embed_24]
|
136 |
+
for _ii, block in enumerate(self.transformer_blocks):
|
137 |
+
noise = block(noise)
|
138 |
+
if len(scale_list)!=0 and len(embed_list)!=0:
|
139 |
+
noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :]
|
140 |
+
|
141 |
+
hidden_states = noise
|
142 |
+
hidden_states = self.norm_out(hidden_states, embed_last)
|
143 |
+
hidden_states = self.proj_out(hidden_states)
|
144 |
+
|
145 |
+
# unpatchify
|
146 |
+
patch_size = self.patch_size
|
147 |
+
height = height // patch_size
|
148 |
+
width = width // patch_size
|
149 |
+
|
150 |
+
hidden_states = hidden_states.reshape(
|
151 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
152 |
+
)
|
153 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
154 |
+
output = hidden_states.reshape(
|
155 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
156 |
+
)
|
157 |
+
return output + ori_noise
|
158 |
+
|
159 |
+
def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False):
|
160 |
+
return load_filtered_state_dict(self, state_dict)
|
161 |
+
|
162 |
+
class PromptSDXLNet(nn.Module):
|
163 |
+
|
164 |
+
def __init__(self,
|
165 |
+
sample_size: int = 128,
|
166 |
+
patch_size: int = 2,
|
167 |
+
in_channels: int = 4,
|
168 |
+
num_layers: int = 4,
|
169 |
+
attention_head_dim: int = 64,
|
170 |
+
num_attention_heads: int = 24,
|
171 |
+
out_channels: int = 4,
|
172 |
+
pos_embed_max_size: int = 192
|
173 |
+
):
|
174 |
+
super().__init__()
|
175 |
+
self.sample_size = sample_size
|
176 |
+
self.patch_size = patch_size
|
177 |
+
self.in_channels = in_channels
|
178 |
+
self.num_layers = num_layers
|
179 |
+
self.attention_head_dim = attention_head_dim
|
180 |
+
self.num_attention_heads = num_attention_heads
|
181 |
+
self.out_channels = out_channels
|
182 |
+
self.pos_embed_max_size = pos_embed_max_size
|
183 |
+
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
184 |
+
|
185 |
+
self.pos_embed = PatchEmbed(
|
186 |
+
height=self.sample_size,
|
187 |
+
width=self.sample_size,
|
188 |
+
patch_size=self.patch_size,
|
189 |
+
in_channels=self.in_channels,
|
190 |
+
embed_dim=self.inner_dim,
|
191 |
+
pos_embed_max_size=pos_embed_max_size
|
192 |
+
)
|
193 |
+
|
194 |
+
self.transformer_blocks = nn.ModuleList(
|
195 |
+
[
|
196 |
+
BasicTransformerBlock(
|
197 |
+
dim=self.inner_dim,
|
198 |
+
num_attention_heads=self.num_attention_heads,
|
199 |
+
attention_head_dim=self.attention_head_dim,
|
200 |
+
ff_inner_dim=2*self.inner_dim # mult should be 4 by default
|
201 |
+
)
|
202 |
+
for i in range(self.num_layers)
|
203 |
+
]
|
204 |
+
)
|
205 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
206 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
207 |
+
|
208 |
+
self.noise_shape = (1, 4, 128, 128)
|
209 |
+
self.pre8_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
210 |
+
self.pre16_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
211 |
+
self.pre24_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
212 |
+
|
213 |
+
self.pre8_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
214 |
+
self.pre16_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
215 |
+
self.pre24_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
216 |
+
|
217 |
+
self.last_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
|
218 |
+
# self.last_linear2 = nn.Sequential(nn.Linear(667, 32))
|
219 |
+
self.skip_connection2 = nn.Linear(2048, 1, bias=False)
|
220 |
+
self.skip_connection = nn.Linear(154+1, 8, bias=False)
|
221 |
+
self.trans_linear = nn.Linear(154+1+2048, 1536, bias=False)
|
222 |
+
self.pool_prompt_linear = nn.Linear(2560, 2048, bias=False)
|
223 |
+
nn.init.constant_(self.skip_connection.weight.data, 0)
|
224 |
+
nn.init.constant_(self.trans_linear.weight.data, 0)
|
225 |
+
nn.init.constant_(self.trans_linear.weight.data, 0)
|
226 |
+
nn.init.constant_(self.pre8_linear[-1].weight.data, 0)
|
227 |
+
nn.init.constant_(self.pre16_linear[-1].weight.data, 0)
|
228 |
+
nn.init.constant_(self.pre24_linear[-1].weight.data, 0)
|
229 |
+
nn.init.constant_(self.pre8_linear2[-1].weight.data, 0)
|
230 |
+
nn.init.constant_(self.pre16_linear2[-1].weight.data, 0)
|
231 |
+
nn.init.constant_(self.pre24_linear2[-1].weight.data, 0)
|
232 |
+
|
233 |
+
def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor:
|
234 |
+
|
235 |
+
assert noise is not None
|
236 |
+
_ori_v = _v.clone()
|
237 |
+
_v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0)
|
238 |
+
positive_embedding = _s.permute(0, 2, 1) @ _v @ _d # [2, 64, 154] [2, 64] [2, 64, 2048]
|
239 |
+
pool_embedding = self.pool_prompt_linear(_pool_embedding[:, None, :])
|
240 |
+
embedding = torch.cat([positive_embedding, pool_embedding], dim=1)
|
241 |
+
bs = noise.shape[0]
|
242 |
+
height, width = noise.shape[-2:]
|
243 |
+
embed_8 = embedding
|
244 |
+
embed_16 = embedding
|
245 |
+
embed_24 = embedding
|
246 |
+
scale_8 = self.pre8_linear2(embed_8).mean(1)
|
247 |
+
scale_16 = self.pre16_linear2(embed_16).mean(1)
|
248 |
+
scale_24 = self.pre24_linear2(embed_24).mean(1)
|
249 |
+
embed_8 = self.pre8_linear(embed_8).mean(1)
|
250 |
+
embed_16 = self.pre16_linear(embed_16).mean(1)
|
251 |
+
embed_24 = self.pre24_linear(embed_24).mean(1)
|
252 |
+
embed_last = self.last_linear(embedding).mean(1)
|
253 |
+
embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1)
|
254 |
+
skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1)
|
255 |
+
scale_skip, embed_skip = skip_embedding.chunk(2,dim=1)
|
256 |
+
|
257 |
+
ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None]
|
258 |
+
noise = self.pos_embed(noise)
|
259 |
+
noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :]
|
260 |
+
scale_list = [scale_16, scale_24]
|
261 |
+
embed_list = [embed_16, embed_24]
|
262 |
+
for _ii, block in enumerate(self.transformer_blocks):
|
263 |
+
noise = block(noise)
|
264 |
+
if len(scale_list)!=0 and len(embed_list)!=0:
|
265 |
+
noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :]
|
266 |
+
|
267 |
+
hidden_states = noise
|
268 |
+
hidden_states = self.norm_out(hidden_states, embed_last)
|
269 |
+
hidden_states = self.proj_out(hidden_states)
|
270 |
+
|
271 |
+
# unpatchify
|
272 |
+
patch_size = self.patch_size
|
273 |
+
height = height // patch_size
|
274 |
+
width = width // patch_size
|
275 |
+
|
276 |
+
hidden_states = hidden_states.reshape(
|
277 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
278 |
+
)
|
279 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
280 |
+
output = hidden_states.reshape(
|
281 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
282 |
+
)
|
283 |
+
return output + ori_noise
|
284 |
+
|
285 |
+
def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False):
|
286 |
+
return load_filtered_state_dict(self, state_dict)
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
def load_filtered_state_dict(model, state_dict):
|
291 |
+
model_state_dict = model.state_dict()
|
292 |
+
filtered_state_dict = {}
|
293 |
+
for k, v in state_dict.items():
|
294 |
+
if k in model_state_dict:
|
295 |
+
if model_state_dict[k].size() == v.size():
|
296 |
+
filtered_state_dict[k] = v
|
297 |
+
else:
|
298 |
+
print(f"Skipping {k}: shape mismatch ({model_state_dict[k].size()} vs {v.size()})")
|
299 |
+
else:
|
300 |
+
print(f"Skipping {k}: not found in model's state_dict.")
|
301 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
302 |
+
return model
|
303 |
+
|
304 |
+
def custom_collate_fn_2_0(batch):
|
305 |
+
noise_pred_texts, prompts, noise_preds, max_scores = zip(*batch)
|
306 |
+
|
307 |
+
noise_pred_texts = torch.stack(noise_pred_texts)
|
308 |
+
noise_preds = torch.stack(noise_preds)
|
309 |
+
max_scores = torch.stack(max_scores)
|
310 |
+
|
311 |
+
return noise_pred_texts, prompts, noise_preds, max_scores
|
312 |
+
|
diffusion_pipeline/sd35_pipeline.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
diffusion_pipeline/sdxl_pipeline.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
einops
|
4 |
+
wandb
|
5 |
+
accelerate
|
6 |
+
pandas
|
7 |
+
imageio
|
8 |
+
gradio
|
9 |
+
imageio-ffmpeg
|
10 |
+
omegaconf
|
11 |
+
spaces
|
12 |
+
torch==2.4 --index-url https://download.pytorch.org/whl/cu124
|
13 |
+
torchaudio==2.4 --index-url https://download.pytorch.org/whl/cu124
|
14 |
+
torchvision==0.19.0 --index-url https://download.pytorch.org/whl/cu124
|