File size: 10,464 Bytes
923b896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed116a
923b896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed116a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923b896
fed116a
 
 
923b896
fed116a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923b896
fed116a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923b896
 
fed116a
923b896
 
fed116a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923b896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed116a
923b896
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

def load_and_preprocess_data(file_path):
    # Read Excel file, skipping the first 2 rows
    df = pd.read_excel(file_path, skiprows=2)
    
    # Extract data for each configuration using column letters
    milvus_llama = df.iloc[:, 2:8].copy()  # Columns C to H
    milvus_llama.columns = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC', 
                           'Retrieval_Time', 'Context_Relevance', 'Context_Utilization']
    
    weaviate_mistral = df.iloc[:, 9:16].copy()  # Columns J to P
    weaviate_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util', 
                               'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    milvus_mistral = df.iloc[:, 17:24].copy()  # Columns R to X
    milvus_mistral.columns = ['Retrieval_Time', 'Context_Rel', 'Util', 
                             'Adherence', 'RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    # Replace 'na' with NaN and convert to float
    milvus_llama = milvus_llama.replace('na', np.nan).astype(float)
    weaviate_mistral = weaviate_mistral.replace('na', np.nan).astype(float)
    milvus_mistral = milvus_mistral.replace('na', np.nan).astype(float)
    
    return milvus_llama, weaviate_mistral, milvus_mistral

def create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral):
    plt.style.use('default')  # Using default style instead of seaborn
    fig, axes = plt.subplots(2, 2, figsize=(15, 12))
    
    # Retrieval Time Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['Retrieval_Time'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['Retrieval_Time'].dropna(),
        'Milvus + Mistral': milvus_mistral['Retrieval_Time'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[0,0])
    axes[0,0].set_title('VectorDB Retrieval Time Comparison')
    axes[0,0].set_ylabel('Time (seconds)')
    axes[0,0].tick_params(axis='x', rotation=45)
    
    # RMSE Context Relevance Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['RMSE_Context_Rel'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Rel'].dropna(),
        'Milvus + Mistral': milvus_mistral['RMSE_Context_Rel'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[0,1])
    axes[0,1].set_title('RMSE Context Relevance')
    axes[0,1].tick_params(axis='x', rotation=45)
    
    # RMSE Context Utilization Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['RMSE_Context_Util'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['RMSE_Context_Util'].dropna(),
        'Milvus + Mistral': milvus_mistral['RMSE_Context_Util'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[1,0])
    axes[1,0].set_title('RMSE Context Utilization')
    axes[1,0].tick_params(axis='x', rotation=45)
    
    # AUROC Comparison
    data = {
        'Milvus + LLaMA': milvus_llama['AUCROC'].dropna(),
        'Weaviate + Mistral': weaviate_mistral['AUCROC'].dropna(),
        'Milvus + Mistral': milvus_mistral['AUCROC'].dropna()
    }
    sns.boxplot(data=pd.DataFrame(data), ax=axes[1,1])
    axes[1,1].set_title('AUROC Scores')
    axes[1,1].tick_params(axis='x', rotation=45)
    
    plt.tight_layout()
    plt.savefig('report/visualizations/performance_comparison.png', dpi=300, bbox_inches='tight')
    plt.close()

def create_correlation_plots(milvus_llama, weaviate_mistral, milvus_mistral):
    # Create separate plots for each model
    
    # 1. Milvus + LLaMA
    plt.figure(figsize=(15, 10))
    
    # Relevance comparison
    plt.subplot(2, 1, 1)
    plt.plot(range(len(milvus_llama)), milvus_llama['RMSE_Context_Rel'], 'o--', 
            color='red', label='RMSE Context Relevance', linewidth=2, alpha=0.7)
    plt.plot(range(len(milvus_llama)), milvus_llama['Context_Relevance'], 'o-', 
            color='darkred', label='Context Relevance', linewidth=2, alpha=0.7)
    plt.title('Milvus + LLaMA: Context Relevance vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    # Utilization comparison
    plt.subplot(2, 1, 2)
    plt.plot(range(len(milvus_llama)), milvus_llama['RMSE_Context_Util'], 'o--', 
            color='blue', label='RMSE Context Utilization', linewidth=2, alpha=0.7)
    plt.plot(range(len(milvus_llama)), milvus_llama['Context_Utilization'], 'o-', 
            color='darkblue', label='Context Utilization', linewidth=2, alpha=0.7)
    plt.title('Milvus + LLaMA: Context Utilization vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    plt.tight_layout()
    plt.savefig('report/visualizations/milvus_llama_plots.png', bbox_inches='tight', dpi=300)
    plt.close()
    
    # 2. Weaviate + Mistral
    plt.figure(figsize=(15, 10))
    
    # Relevance comparison
    plt.subplot(2, 1, 1)
    plt.plot(range(len(weaviate_mistral)), weaviate_mistral['RMSE_Context_Rel'], 'o--', 
            color='red', label='RMSE Context Relevance', linewidth=2, alpha=0.7)
    plt.plot(range(len(weaviate_mistral)), weaviate_mistral['Context_Rel'], 'o-', 
            color='darkred', label='Context Relevance', linewidth=2, alpha=0.7)
    plt.title('Weaviate + Mistral: Context Relevance vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    # Utilization comparison
    plt.subplot(2, 1, 2)
    plt.plot(range(len(weaviate_mistral)), weaviate_mistral['RMSE_Context_Util'], 'o--', 
            color='blue', label='RMSE Context Utilization', linewidth=2, alpha=0.7)
    plt.plot(range(len(weaviate_mistral)), weaviate_mistral['Util'], 'o-', 
            color='darkblue', label='Context Utilization', linewidth=2, alpha=0.7)
    plt.title('Weaviate + Mistral: Context Utilization vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    plt.tight_layout()
    plt.savefig('report/visualizations/weaviate_mistral_plots.png', bbox_inches='tight', dpi=300)
    plt.close()
    
    # 3. Milvus + Mistral
    plt.figure(figsize=(15, 10))
    
    # Relevance comparison
    plt.subplot(2, 1, 1)
    plt.plot(range(len(milvus_mistral)), milvus_mistral['RMSE_Context_Rel'], 'o--', 
            color='red', label='RMSE Context Relevance', linewidth=2, alpha=0.7)
    plt.plot(range(len(milvus_mistral)), milvus_mistral['Context_Rel'], 'o-', 
            color='darkred', label='Context Relevance', linewidth=2, alpha=0.7)
    plt.title('Milvus + Mistral: Context Relevance vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    # Utilization comparison
    plt.subplot(2, 1, 2)
    plt.plot(range(len(milvus_mistral)), milvus_mistral['RMSE_Context_Util'], 'o--', 
            color='blue', label='RMSE Context Utilization', linewidth=2, alpha=0.7)
    plt.plot(range(len(milvus_mistral)), milvus_mistral['Util'], 'o-', 
            color='darkblue', label='Context Utilization', linewidth=2, alpha=0.7)
    plt.title('Milvus + Mistral: Context Utilization vs RMSE')
    plt.xlabel('Data Points')
    plt.ylabel('Score')
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.legend()
    
    plt.tight_layout()
    plt.savefig('report/visualizations/milvus_mistral_plots.png', bbox_inches='tight', dpi=300)
    plt.close()

    # Print statistical analysis for each model
    print("\nStatistical Analysis:")
    
    models = {
        'Milvus + LLaMA': (milvus_llama['RMSE_Context_Rel'], milvus_llama['Context_Relevance'],
                          milvus_llama['RMSE_Context_Util'], milvus_llama['Context_Utilization']),
        'Weaviate + Mistral': (weaviate_mistral['RMSE_Context_Rel'], weaviate_mistral['Context_Rel'],
                              weaviate_mistral['RMSE_Context_Util'], weaviate_mistral['Util']),
        'Milvus + Mistral': (milvus_mistral['RMSE_Context_Rel'], milvus_mistral['Context_Rel'],
                            milvus_mistral['RMSE_Context_Util'], milvus_mistral['Util'])
    }
    
    for model, (rmse_rel, rel, rmse_util, util) in models.items():
        print(f"\n{model}:")
        print(f"Context Relevance - Mean: {rel.mean():.3f}, Std: {rel.std():.3f}")
        print(f"RMSE Context Rel - Mean: {rmse_rel.mean():.3f}, Std: {rmse_rel.std():.3f}")
        print(f"Context Utilization - Mean: {util.mean():.3f}, Std: {util.std():.3f}")
        print(f"RMSE Context Util - Mean: {rmse_util.mean():.3f}, Std: {rmse_util.std():.3f}")

def create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral):
    metrics = ['RMSE_Context_Rel', 'RMSE_Context_Util', 'AUCROC']
    
    plt.figure(figsize=(15, 5))
    for i, metric in enumerate(metrics, 1):
        plt.subplot(1, 3, i)
        data = {
            'Milvus + LLaMA': milvus_llama[metric].dropna(),
            'Weaviate + Mistral': weaviate_mistral[metric].dropna(),
            'Milvus + Mistral': milvus_mistral[metric].dropna()
        }
        sns.violinplot(data=pd.DataFrame(data))
        plt.title(f'{metric} Distribution')
        plt.xticks(rotation=45)
    
    plt.tight_layout()
    plt.savefig('report/visualizations/metric_distributions.png', dpi=300, bbox_inches='tight')
    plt.close()

def print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral):
    print("\nSummary Statistics:")
    
    print("\nMilvus + LLaMA:")
    print(milvus_llama.describe().round(4))
    
    print("\nWeaviate + Mistral:")
    print(weaviate_mistral.describe().round(4))
    
    print("\nMilvus + Mistral:")
    print(milvus_mistral.describe().round(4))

def main():
    # Create visualizations directory
    import os
    os.makedirs("report/visualizations", exist_ok=True)
    
    # Load data
    milvus_llama, weaviate_mistral, milvus_mistral = load_and_preprocess_data("report/Scores for RAGBenchCapstone.xlsx")
    
    # Create visualizations
    create_performance_comparison(milvus_llama, weaviate_mistral, milvus_mistral)
    create_correlation_plots(milvus_llama, weaviate_mistral, milvus_mistral)
    create_violin_plots(milvus_llama, weaviate_mistral, milvus_mistral)
    
    # Print statistics
    print_summary_statistics(milvus_llama, weaviate_mistral, milvus_mistral)

if __name__ == "__main__":
    main()