Spaces:
Build error
Build error
File size: 18,033 Bytes
4aa1ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import io
import os
import ffmpeg
import numpy as np
import gradio as gr
import soundfile as sf
import modelscope_studio.components.base as ms
import modelscope_studio.components.antd as antd
import gradio.processing_utils as processing_utils
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor
from gradio_client import utils as client_utils
from qwen_omni_utils import process_mm_info
from argparse import ArgumentParser
def _load_model_processor(args):
if args.cpu_only:
device_map = 'cpu'
else:
device_map = 'auto'
# Check if flash-attn2 flag is enabled and load model accordingly
if args.flash_attn2:
model = Qwen2_5OmniModel.from_pretrained(args.checkpoint_path,
torch_dtype='auto',
attn_implementation='flash_attention_2',
device_map=device_map)
else:
model = Qwen2_5OmniModel.from_pretrained(args.checkpoint_path, device_map=device_map)
processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path)
return model, processor
def _launch_demo(args, model, processor):
# Voice settings
VOICE_LIST = ['Chelsie', 'Ethan']
DEFAULT_VOICE = 'Chelsie'
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
language = args.ui_language
def get_text(text: str, cn_text: str):
if language == 'en':
return text
if language == 'zh':
return cn_text
return text
def convert_webm_to_mp4(input_file, output_file):
try:
(
ffmpeg
.input(input_file)
.output(output_file, acodec='aac', ar='16000', audio_bitrate='192k')
.run(quiet=True, overwrite_output=True)
)
print(f"Conversion successful: {output_file}")
except ffmpeg.Error as e:
print("An error occurred during conversion.")
print(e.stderr.decode('utf-8'))
def format_history(history: list, system_prompt: str):
messages = []
messages.append({"role": "system", "content": system_prompt})
for item in history:
if isinstance(item["content"], str):
messages.append({"role": item['role'], "content": item['content']})
elif item["role"] == "user" and (isinstance(item["content"], list) or
isinstance(item["content"], tuple)):
file_path = item["content"][0]
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
messages.append({
"role":
item['role'],
"content": [{
"type": "image",
"image": file_path
}]
})
elif mime_type.startswith("video"):
messages.append({
"role":
item['role'],
"content": [{
"type": "video",
"video": file_path
}]
})
elif mime_type.startswith("audio"):
messages.append({
"role":
item['role'],
"content": [{
"type": "audio",
"audio": file_path,
}]
})
return messages
def predict(messages, voice=DEFAULT_VOICE):
print('predict history: ', messages)
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(messages, True)
inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
inputs = inputs.to(model.device).to(model.dtype)
text_ids, audio = model.generate(**inputs, spk=voice, use_audio_in_video=True)
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = response[0].split("\n")[-1]
yield {"type": "text", "data": response}
audio = np.array(audio * 32767).astype(np.int16)
wav_io = io.BytesIO()
sf.write(wav_io, audio, samplerate=24000, format="WAV")
wav_io.seek(0)
wav_bytes = wav_io.getvalue()
audio_path = processing_utils.save_bytes_to_cache(
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
yield {"type": "audio", "data": audio_path}
def media_predict(audio, video, history, system_prompt, voice_choice):
# First yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if video is not None:
convert_webm_to_mp4(video, video.replace('.webm', '.mp4'))
video = video.replace(".webm", ".mp4")
files = [audio, video]
for f in files:
if f:
history.append({"role": "user", "content": (f, )})
formatted_history = format_history(history=history,
system_prompt=system_prompt,)
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
# Final yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=True), # submit_btn
gr.update(visible=False), # stop_btn
)
def chat_predict(text, audio, image, video, history, system_prompt, voice_choice):
# Process text input
if text:
history.append({"role": "user", "content": text})
# Process audio input
if audio:
history.append({"role": "user", "content": (audio, )})
# Process image input
if image:
history.append({"role": "user", "content": (image, )})
# Process video input
if video:
history.append({"role": "user", "content": (video, )})
formatted_history = format_history(history=history,
system_prompt=system_prompt)
yield None, None, None, None, history
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(
), history
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
with gr.Sidebar(open=False):
system_prompt_textbox = gr.Textbox(label="System Prompt",
value=default_system_prompt)
with antd.Flex(gap="small", justify="center", align="center"):
with antd.Flex(vertical=True, gap="small", align="center"):
antd.Typography.Title("Qwen2.5-Omni Demo",
level=1,
elem_style=dict(margin=0, fontSize=28))
with antd.Flex(vertical=True, gap="small"):
antd.Typography.Text(get_text("🎯 Instructions for use:",
"🎯 使用说明:"),
strong=True)
antd.Typography.Text(
get_text(
"1️⃣ Click the Audio Record button or the Camera Record button.",
"1️⃣ 点击音频录制按钮,或摄像头-录制按钮"))
antd.Typography.Text(
get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频"))
antd.Typography.Text(
get_text(
"3️⃣ Click the submit button and wait for the model's response.",
"3️⃣ 点击提交并等待模型的回答"))
voice_choice = gr.Dropdown(label="Voice Choice",
choices=VOICE_LIST,
value=DEFAULT_VOICE)
with gr.Tabs():
with gr.Tab("Online"):
with gr.Row():
with gr.Column(scale=1):
microphone = gr.Audio(sources=['microphone'],
type="filepath")
webcam = gr.Video(sources=['webcam'],
height=400,
include_audio=True)
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary")
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
with gr.Column(scale=2):
media_chatbot = gr.Chatbot(height=650, type="messages")
def clear_history():
return [], gr.update(value=None), gr.update(value=None)
submit_event = submit_btn.click(fn=media_predict,
inputs=[
microphone, webcam,
media_chatbot,
system_prompt_textbox,
voice_choice
],
outputs=[
microphone, webcam,
media_chatbot, submit_btn,
stop_btn
])
stop_btn.click(
fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_history,
inputs=None,
outputs=[media_chatbot, microphone, webcam])
with gr.Tab("Offline"):
chatbot = gr.Chatbot(type="messages", height=650)
# Media upload section in one row
with gr.Row(equal_height=True):
audio_input = gr.Audio(sources=["upload"],
type="filepath",
label="Upload Audio",
elem_classes="media-upload",
scale=1)
image_input = gr.Image(sources=["upload"],
type="filepath",
label="Upload Image",
elem_classes="media-upload",
scale=1)
video_input = gr.Video(sources=["upload"],
label="Upload Video",
elem_classes="media-upload",
scale=1)
# Text input section
text_input = gr.Textbox(show_label=False,
placeholder="Enter text here...")
# Control buttons
with gr.Row():
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary",
size="lg")
stop_btn = gr.Button(get_text("Stop", "停止"),
visible=False,
size="lg")
clear_btn = gr.Button(get_text("Clear History", "清除历史"),
size="lg")
def clear_chat_history():
return [], gr.update(value=None), gr.update(
value=None), gr.update(value=None), gr.update(value=None)
submit_event = gr.on(
triggers=[submit_btn.click, text_input.submit],
fn=chat_predict,
inputs=[
text_input, audio_input, image_input, video_input, chatbot,
system_prompt_textbox, voice_choice
],
outputs=[
text_input, audio_input, image_input, video_input, chatbot
])
stop_btn.click(fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_chat_history,
inputs=None,
outputs=[
chatbot, text_input, audio_input, image_input,
video_input
])
# Add some custom CSS to improve the layout
gr.HTML("""
<style>
.media-upload {
margin: 10px;
min-height: 160px;
}
.media-upload > .wrap {
border: 2px dashed #ccc;
border-radius: 8px;
padding: 10px;
height: 100%;
}
.media-upload:hover > .wrap {
border-color: #666;
}
/* Make upload areas equal width */
.media-upload {
flex: 1;
min-width: 0;
}
</style>
""")
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
ssr_mode=False,
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,)
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B"
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default=DEFAULT_CKPT_PATH,
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _get_args()
args.share = True
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor) |