f / app.py
srinuksv's picture
Update app.py
4887e87 verified
import io
import os
import ffmpeg
import numpy as np
import gradio as gr
import soundfile as sf
import modelscope_studio.components.base as ms
import modelscope_studio.components.antd as antd
import gradio.processing_utils as processing_utils
from transformers import AutoModelForCausalLM
from accelerate import disk_offload
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor
from gradio_client import utils as client_utils
from qwen_omni_utils import process_mm_info
from argparse import ArgumentParser
def _load_model_processor(args):
import torch
if args.cpu_only:
device_map = 'cpu'
max_memory = {0: "2GB"} # Limit memory usage when running on CPU
else:
device_map = 'auto'
max_memory = {i: "20GB" for i in range(torch.cuda.device_count())} # Adjust as needed
# Check if flash-attn2 flag is enabled and load model accordingly
if args.flash_attn2:
model = Qwen2_5OmniModel.from_pretrained(
args.checkpoint_path,
torch_dtype='auto',
attn_implementation='flash_attention_2',
device_map=device_map,
max_memory=max_memory
)
else:
model = Qwen2_5OmniModel.from_pretrained(
args.checkpoint_path,
device_map=device_map,
max_memory=max_memory
)
processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path)
return model, processor
def _launch_demo(args, model, processor):
# Voice settings
VOICE_LIST = ['Chelsie', 'Ethan']
DEFAULT_VOICE = 'Chelsie'
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
language = args.ui_language
def get_text(text: str, cn_text: str):
if language == 'en':
return text
if language == 'zh':
return cn_text
return text
def convert_webm_to_mp4(input_file, output_file):
try:
(
ffmpeg
.input(input_file)
.output(output_file, acodec='aac', ar='16000', audio_bitrate='192k')
.run(quiet=True, overwrite_output=True)
)
print(f"Conversion successful: {output_file}")
except ffmpeg.Error as e:
print("An error occurred during conversion.")
print(e.stderr.decode('utf-8'))
def format_history(history: list, system_prompt: str):
messages = []
messages.append({"role": "system", "content": system_prompt})
for item in history:
if isinstance(item["content"], str):
messages.append({"role": item['role'], "content": item['content']})
elif item["role"] == "user" and (isinstance(item["content"], list) or
isinstance(item["content"], tuple)):
file_path = item["content"][0]
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
messages.append({
"role":
item['role'],
"content": [{
"type": "image",
"image": file_path
}]
})
elif mime_type.startswith("video"):
messages.append({
"role":
item['role'],
"content": [{
"type": "video",
"video": file_path
}]
})
elif mime_type.startswith("audio"):
messages.append({
"role":
item['role'],
"content": [{
"type": "audio",
"audio": file_path,
}]
})
return messages
def predict(messages, voice=DEFAULT_VOICE):
print('predict history: ', messages)
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(messages, True)
inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
inputs = inputs.to(model.device).to(model.dtype)
text_ids, audio = model.generate(**inputs, spk=voice, use_audio_in_video=True)
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
response = response[0].split("\n")[-1]
yield {"type": "text", "data": response}
audio = np.array(audio * 32767).astype(np.int16)
wav_io = io.BytesIO()
sf.write(wav_io, audio, samplerate=24000, format="WAV")
wav_io.seek(0)
wav_bytes = wav_io.getvalue()
audio_path = processing_utils.save_bytes_to_cache(
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
yield {"type": "audio", "data": audio_path}
def media_predict(audio, video, history, system_prompt, voice_choice):
# First yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if video is not None:
convert_webm_to_mp4(video, video.replace('.webm', '.mp4'))
video = video.replace(".webm", ".mp4")
files = [audio, video]
for f in files:
if f:
history.append({"role": "user", "content": (f, )})
formatted_history = format_history(history=history,
system_prompt=system_prompt,)
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=False), # submit_btn
gr.update(visible=True), # stop_btn
)
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
# Final yield
yield (
None, # microphone
None, # webcam
history, # media_chatbot
gr.update(visible=True), # submit_btn
gr.update(visible=False), # stop_btn
)
def chat_predict(text, audio, image, video, history, system_prompt, voice_choice):
# Process text input
if text:
history.append({"role": "user", "content": text})
# Process audio input
if audio:
history.append({"role": "user", "content": (audio, )})
# Process image input
if image:
history.append({"role": "user", "content": (image, )})
# Process video input
if video:
history.append({"role": "user", "content": (video, )})
formatted_history = format_history(history=history,
system_prompt=system_prompt)
yield None, None, None, None, history
history.append({"role": "assistant", "content": ""})
for chunk in predict(formatted_history, voice_choice):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(
), history
if chunk["type"] == "audio":
history.append({
"role": "assistant",
"content": gr.Audio(chunk["data"])
})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
with gr.Sidebar(open=False):
system_prompt_textbox = gr.Textbox(label="System Prompt",
value=default_system_prompt)
with antd.Flex(gap="small", justify="center", align="center"):
with antd.Flex(vertical=True, gap="small", align="center"):
antd.Typography.Title("Qwen2.5-Omni Demo",
level=1,
elem_style=dict(margin=0, fontSize=28))
with antd.Flex(vertical=True, gap="small"):
antd.Typography.Text(get_text("🎯 Instructions for use:",
"🎯 使用说明:"),
strong=True)
antd.Typography.Text(
get_text(
"1️⃣ Click the Audio Record button or the Camera Record button.",
"1️⃣ 点击音频录制按钮,或摄像头-录制按钮"))
antd.Typography.Text(
get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频"))
antd.Typography.Text(
get_text(
"3️⃣ Click the submit button and wait for the model's response.",
"3️⃣ 点击提交并等待模型的回答"))
voice_choice = gr.Dropdown(label="Voice Choice",
choices=VOICE_LIST,
value=DEFAULT_VOICE)
with gr.Tabs():
with gr.Tab("Online"):
with gr.Row():
with gr.Column(scale=1):
microphone = gr.Audio(sources=['microphone'],
type="filepath")
webcam = gr.Video(sources=['webcam'],
height=400,
include_audio=True)
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary")
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
with gr.Column(scale=2):
media_chatbot = gr.Chatbot(height=650, type="messages")
def clear_history():
return [], gr.update(value=None), gr.update(value=None)
submit_event = submit_btn.click(fn=media_predict,
inputs=[
microphone, webcam,
media_chatbot,
system_prompt_textbox,
voice_choice
],
outputs=[
microphone, webcam,
media_chatbot, submit_btn,
stop_btn
])
stop_btn.click(
fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_history,
inputs=None,
outputs=[media_chatbot, microphone, webcam])
with gr.Tab("Offline"):
chatbot = gr.Chatbot(type="messages", height=650)
# Media upload section in one row
with gr.Row(equal_height=True):
audio_input = gr.Audio(sources=["upload"],
type="filepath",
label="Upload Audio",
elem_classes="media-upload",
scale=1)
image_input = gr.Image(sources=["upload"],
type="filepath",
label="Upload Image",
elem_classes="media-upload",
scale=1)
video_input = gr.Video(sources=["upload"],
label="Upload Video",
elem_classes="media-upload",
scale=1)
# Text input section
text_input = gr.Textbox(show_label=False,
placeholder="Enter text here...")
# Control buttons
with gr.Row():
submit_btn = gr.Button(get_text("Submit", "提交"),
variant="primary",
size="lg")
stop_btn = gr.Button(get_text("Stop", "停止"),
visible=False,
size="lg")
clear_btn = gr.Button(get_text("Clear History", "清除历史"),
size="lg")
def clear_chat_history():
return [], gr.update(value=None), gr.update(
value=None), gr.update(value=None), gr.update(value=None)
submit_event = gr.on(
triggers=[submit_btn.click, text_input.submit],
fn=chat_predict,
inputs=[
text_input, audio_input, image_input, video_input, chatbot,
system_prompt_textbox, voice_choice
],
outputs=[
text_input, audio_input, image_input, video_input, chatbot
])
stop_btn.click(fn=lambda:
(gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[submit_event],
queue=False)
clear_btn.click(fn=clear_chat_history,
inputs=None,
outputs=[
chatbot, text_input, audio_input, image_input,
video_input
])
# Add some custom CSS to improve the layout
gr.HTML("""
<style>
.media-upload {
margin: 10px;
min-height: 160px;
}
.media-upload > .wrap {
border: 2px dashed #ccc;
border-radius: 8px;
padding: 10px;
height: 100%;
}
.media-upload:hover > .wrap {
border-color: #666;
}
/* Make upload areas equal width */
.media-upload {
flex: 1;
min-width: 0;
}
</style>
""")
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
ssr_mode=False,
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,)
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B"
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default=DEFAULT_CKPT_PATH,
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _get_args()
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor)