|
import io |
|
import os |
|
import ffmpeg |
|
|
|
import numpy as np |
|
import gradio as gr |
|
import soundfile as sf |
|
|
|
import modelscope_studio.components.base as ms |
|
import modelscope_studio.components.antd as antd |
|
import gradio.processing_utils as processing_utils |
|
from transformers import AutoModelForCausalLM |
|
from accelerate import disk_offload |
|
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor |
|
from gradio_client import utils as client_utils |
|
from qwen_omni_utils import process_mm_info |
|
from argparse import ArgumentParser |
|
|
|
def _load_model_processor(args): |
|
import torch |
|
|
|
if args.cpu_only: |
|
device_map = 'cpu' |
|
max_memory = {0: "2GB"} |
|
else: |
|
device_map = 'auto' |
|
max_memory = {i: "20GB" for i in range(torch.cuda.device_count())} |
|
|
|
|
|
if args.flash_attn2: |
|
model = Qwen2_5OmniModel.from_pretrained( |
|
args.checkpoint_path, |
|
torch_dtype='auto', |
|
attn_implementation='flash_attention_2', |
|
device_map=device_map, |
|
max_memory=max_memory |
|
) |
|
else: |
|
model = Qwen2_5OmniModel.from_pretrained( |
|
args.checkpoint_path, |
|
device_map=device_map, |
|
max_memory=max_memory |
|
) |
|
|
|
processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path) |
|
return model, processor |
|
|
|
|
|
def _launch_demo(args, model, processor): |
|
|
|
VOICE_LIST = ['Chelsie', 'Ethan'] |
|
DEFAULT_VOICE = 'Chelsie' |
|
|
|
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.' |
|
|
|
language = args.ui_language |
|
|
|
def get_text(text: str, cn_text: str): |
|
if language == 'en': |
|
return text |
|
if language == 'zh': |
|
return cn_text |
|
return text |
|
|
|
def convert_webm_to_mp4(input_file, output_file): |
|
try: |
|
( |
|
ffmpeg |
|
.input(input_file) |
|
.output(output_file, acodec='aac', ar='16000', audio_bitrate='192k') |
|
.run(quiet=True, overwrite_output=True) |
|
) |
|
print(f"Conversion successful: {output_file}") |
|
except ffmpeg.Error as e: |
|
print("An error occurred during conversion.") |
|
print(e.stderr.decode('utf-8')) |
|
|
|
def format_history(history: list, system_prompt: str): |
|
messages = [] |
|
messages.append({"role": "system", "content": system_prompt}) |
|
for item in history: |
|
if isinstance(item["content"], str): |
|
messages.append({"role": item['role'], "content": item['content']}) |
|
elif item["role"] == "user" and (isinstance(item["content"], list) or |
|
isinstance(item["content"], tuple)): |
|
file_path = item["content"][0] |
|
|
|
mime_type = client_utils.get_mimetype(file_path) |
|
if mime_type.startswith("image"): |
|
messages.append({ |
|
"role": |
|
item['role'], |
|
"content": [{ |
|
"type": "image", |
|
"image": file_path |
|
}] |
|
}) |
|
elif mime_type.startswith("video"): |
|
messages.append({ |
|
"role": |
|
item['role'], |
|
"content": [{ |
|
"type": "video", |
|
"video": file_path |
|
}] |
|
}) |
|
elif mime_type.startswith("audio"): |
|
messages.append({ |
|
"role": |
|
item['role'], |
|
"content": [{ |
|
"type": "audio", |
|
"audio": file_path, |
|
}] |
|
}) |
|
return messages |
|
|
|
def predict(messages, voice=DEFAULT_VOICE): |
|
print('predict history: ', messages) |
|
|
|
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
audios, images, videos = process_mm_info(messages, True) |
|
|
|
inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True) |
|
inputs = inputs.to(model.device).to(model.dtype) |
|
|
|
text_ids, audio = model.generate(**inputs, spk=voice, use_audio_in_video=True) |
|
|
|
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
response = response[0].split("\n")[-1] |
|
yield {"type": "text", "data": response} |
|
|
|
audio = np.array(audio * 32767).astype(np.int16) |
|
wav_io = io.BytesIO() |
|
sf.write(wav_io, audio, samplerate=24000, format="WAV") |
|
wav_io.seek(0) |
|
wav_bytes = wav_io.getvalue() |
|
audio_path = processing_utils.save_bytes_to_cache( |
|
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE) |
|
yield {"type": "audio", "data": audio_path} |
|
|
|
def media_predict(audio, video, history, system_prompt, voice_choice): |
|
|
|
yield ( |
|
None, |
|
None, |
|
history, |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
) |
|
|
|
if video is not None: |
|
convert_webm_to_mp4(video, video.replace('.webm', '.mp4')) |
|
video = video.replace(".webm", ".mp4") |
|
files = [audio, video] |
|
|
|
for f in files: |
|
if f: |
|
history.append({"role": "user", "content": (f, )}) |
|
|
|
formatted_history = format_history(history=history, |
|
system_prompt=system_prompt,) |
|
|
|
|
|
history.append({"role": "assistant", "content": ""}) |
|
|
|
for chunk in predict(formatted_history, voice_choice): |
|
if chunk["type"] == "text": |
|
history[-1]["content"] = chunk["data"] |
|
yield ( |
|
None, |
|
None, |
|
history, |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
) |
|
if chunk["type"] == "audio": |
|
history.append({ |
|
"role": "assistant", |
|
"content": gr.Audio(chunk["data"]) |
|
}) |
|
|
|
|
|
yield ( |
|
None, |
|
None, |
|
history, |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
) |
|
|
|
def chat_predict(text, audio, image, video, history, system_prompt, voice_choice): |
|
|
|
if text: |
|
history.append({"role": "user", "content": text}) |
|
|
|
|
|
if audio: |
|
history.append({"role": "user", "content": (audio, )}) |
|
|
|
|
|
if image: |
|
history.append({"role": "user", "content": (image, )}) |
|
|
|
|
|
if video: |
|
history.append({"role": "user", "content": (video, )}) |
|
|
|
formatted_history = format_history(history=history, |
|
system_prompt=system_prompt) |
|
|
|
yield None, None, None, None, history |
|
|
|
history.append({"role": "assistant", "content": ""}) |
|
for chunk in predict(formatted_history, voice_choice): |
|
if chunk["type"] == "text": |
|
history[-1]["content"] = chunk["data"] |
|
yield gr.skip(), gr.skip(), gr.skip(), gr.skip( |
|
), history |
|
if chunk["type"] == "audio": |
|
history.append({ |
|
"role": "assistant", |
|
"content": gr.Audio(chunk["data"]) |
|
}) |
|
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), history |
|
|
|
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider(): |
|
with gr.Sidebar(open=False): |
|
system_prompt_textbox = gr.Textbox(label="System Prompt", |
|
value=default_system_prompt) |
|
with antd.Flex(gap="small", justify="center", align="center"): |
|
with antd.Flex(vertical=True, gap="small", align="center"): |
|
antd.Typography.Title("Qwen2.5-Omni Demo", |
|
level=1, |
|
elem_style=dict(margin=0, fontSize=28)) |
|
with antd.Flex(vertical=True, gap="small"): |
|
antd.Typography.Text(get_text("🎯 Instructions for use:", |
|
"🎯 使用说明:"), |
|
strong=True) |
|
antd.Typography.Text( |
|
get_text( |
|
"1️⃣ Click the Audio Record button or the Camera Record button.", |
|
"1️⃣ 点击音频录制按钮,或摄像头-录制按钮")) |
|
antd.Typography.Text( |
|
get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频")) |
|
antd.Typography.Text( |
|
get_text( |
|
"3️⃣ Click the submit button and wait for the model's response.", |
|
"3️⃣ 点击提交并等待模型的回答")) |
|
voice_choice = gr.Dropdown(label="Voice Choice", |
|
choices=VOICE_LIST, |
|
value=DEFAULT_VOICE) |
|
with gr.Tabs(): |
|
with gr.Tab("Online"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
microphone = gr.Audio(sources=['microphone'], |
|
type="filepath") |
|
webcam = gr.Video(sources=['webcam'], |
|
height=400, |
|
include_audio=True) |
|
submit_btn = gr.Button(get_text("Submit", "提交"), |
|
variant="primary") |
|
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False) |
|
clear_btn = gr.Button(get_text("Clear History", "清除历史")) |
|
with gr.Column(scale=2): |
|
media_chatbot = gr.Chatbot(height=650, type="messages") |
|
|
|
def clear_history(): |
|
return [], gr.update(value=None), gr.update(value=None) |
|
|
|
submit_event = submit_btn.click(fn=media_predict, |
|
inputs=[ |
|
microphone, webcam, |
|
media_chatbot, |
|
system_prompt_textbox, |
|
voice_choice |
|
], |
|
outputs=[ |
|
microphone, webcam, |
|
media_chatbot, submit_btn, |
|
stop_btn |
|
]) |
|
stop_btn.click( |
|
fn=lambda: |
|
(gr.update(visible=True), gr.update(visible=False)), |
|
inputs=None, |
|
outputs=[submit_btn, stop_btn], |
|
cancels=[submit_event], |
|
queue=False) |
|
clear_btn.click(fn=clear_history, |
|
inputs=None, |
|
outputs=[media_chatbot, microphone, webcam]) |
|
|
|
with gr.Tab("Offline"): |
|
chatbot = gr.Chatbot(type="messages", height=650) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
audio_input = gr.Audio(sources=["upload"], |
|
type="filepath", |
|
label="Upload Audio", |
|
elem_classes="media-upload", |
|
scale=1) |
|
image_input = gr.Image(sources=["upload"], |
|
type="filepath", |
|
label="Upload Image", |
|
elem_classes="media-upload", |
|
scale=1) |
|
video_input = gr.Video(sources=["upload"], |
|
label="Upload Video", |
|
elem_classes="media-upload", |
|
scale=1) |
|
|
|
|
|
text_input = gr.Textbox(show_label=False, |
|
placeholder="Enter text here...") |
|
|
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button(get_text("Submit", "提交"), |
|
variant="primary", |
|
size="lg") |
|
stop_btn = gr.Button(get_text("Stop", "停止"), |
|
visible=False, |
|
size="lg") |
|
clear_btn = gr.Button(get_text("Clear History", "清除历史"), |
|
size="lg") |
|
|
|
def clear_chat_history(): |
|
return [], gr.update(value=None), gr.update( |
|
value=None), gr.update(value=None), gr.update(value=None) |
|
|
|
submit_event = gr.on( |
|
triggers=[submit_btn.click, text_input.submit], |
|
fn=chat_predict, |
|
inputs=[ |
|
text_input, audio_input, image_input, video_input, chatbot, |
|
system_prompt_textbox, voice_choice |
|
], |
|
outputs=[ |
|
text_input, audio_input, image_input, video_input, chatbot |
|
]) |
|
|
|
stop_btn.click(fn=lambda: |
|
(gr.update(visible=True), gr.update(visible=False)), |
|
inputs=None, |
|
outputs=[submit_btn, stop_btn], |
|
cancels=[submit_event], |
|
queue=False) |
|
|
|
clear_btn.click(fn=clear_chat_history, |
|
inputs=None, |
|
outputs=[ |
|
chatbot, text_input, audio_input, image_input, |
|
video_input |
|
]) |
|
|
|
|
|
gr.HTML(""" |
|
<style> |
|
.media-upload { |
|
margin: 10px; |
|
min-height: 160px; |
|
} |
|
.media-upload > .wrap { |
|
border: 2px dashed #ccc; |
|
border-radius: 8px; |
|
padding: 10px; |
|
height: 100%; |
|
} |
|
.media-upload:hover > .wrap { |
|
border-color: #666; |
|
} |
|
/* Make upload areas equal width */ |
|
.media-upload { |
|
flex: 1; |
|
min-width: 0; |
|
} |
|
</style> |
|
""") |
|
|
|
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100, |
|
ssr_mode=False, |
|
share=args.share, |
|
inbrowser=args.inbrowser, |
|
server_port=args.server_port, |
|
server_name=args.server_name,) |
|
|
|
|
|
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B" |
|
def _get_args(): |
|
parser = ArgumentParser() |
|
|
|
parser.add_argument('-c', |
|
'--checkpoint-path', |
|
type=str, |
|
default=DEFAULT_CKPT_PATH, |
|
help='Checkpoint name or path, default to %(default)r') |
|
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only') |
|
|
|
parser.add_argument('--flash-attn2', |
|
action='store_true', |
|
default=False, |
|
help='Enable flash_attention_2 when loading the model.') |
|
parser.add_argument('--share', |
|
action='store_true', |
|
default=False, |
|
help='Create a publicly shareable link for the interface.') |
|
parser.add_argument('--inbrowser', |
|
action='store_true', |
|
default=False, |
|
help='Automatically launch the interface in a new tab on the default browser.') |
|
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.') |
|
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.') |
|
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
if __name__ == "__main__": |
|
args = _get_args() |
|
model, processor = _load_model_processor(args) |
|
_launch_demo(args, model, processor) |