import os import time import json import logging import threading import gradio as gr import google.generativeai as genai from googleapiclient.discovery import build from googleapiclient.http import MediaIoBaseDownload from google.oauth2 import service_account from langchain_community.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader from langchain.chains import RetrievalQA from langchain_google_genai import ChatGoogleGenerativeAI from PyPDF2 import PdfReader from gtts import gTTS # ✅ Configure logging logging.basicConfig(level=logging.INFO) # ✅ Load API Keys logging.info("🔑 Loading API keys...") GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY_1") SERVICE_ACCOUNT_JSON = os.getenv("SERVICE_ACCOUNT_JSON") if not GOOGLE_API_KEY or not SERVICE_ACCOUNT_JSON: logging.error("❌ Missing API Key or Service Account JSON.") raise ValueError("❌ Missing API Key or Service Account JSON. Please add them as environment variables.") os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY SERVICE_ACCOUNT_FILE = json.loads(SERVICE_ACCOUNT_JSON) SCOPES = ["https://www.googleapis.com/auth/drive"] FOLDER_ID = "1xqOpwgwUoiJYf9GkeuB4dayme4zJcujf" creds = service_account.Credentials.from_service_account_info(SERVICE_ACCOUNT_FILE) drive_service = build("drive", "v3", credentials=creds) # ✅ Initialize variables vector_store = None file_id_map = {} temp_dir = "./temp_downloads" os.makedirs(temp_dir, exist_ok=True) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # ✅ Get list of files from Google Drive def get_files_from_drive(): logging.info("📂 Fetching files from Google Drive...") query = f"'{FOLDER_ID}' in parents and trashed = false" results = drive_service.files().list(q=query, fields="files(id, name)").execute() files = results.get("files", []) global file_id_map file_id_map = {file["name"]: file["id"] for file in files} return list(file_id_map.keys()) if files else [] # ✅ Download file from Google Drive def download_file(file_id, file_name): file_path = os.path.join(temp_dir, file_name) request = drive_service.files().get_media(fileId=file_id) with open(file_path, "wb") as f: downloader = MediaIoBaseDownload(f, request) done = False while not done: _, done = downloader.next_chunk() return file_path # ✅ Process documents def process_documents(selected_files): global vector_store docs = [] for file_name in selected_files: file_path = download_file(file_id_map[file_name], file_name) if file_name.endswith(".pdf"): loader = PyPDFLoader(file_path) elif file_name.endswith(".txt"): loader = TextLoader(file_path) elif file_name.endswith(".docx"): loader = Docx2txtLoader(file_path) else: logging.warning(f"⚠️ Unsupported file type: {file_name}") continue docs.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) split_docs = text_splitter.split_documents(docs) vector_store = Chroma.from_documents(split_docs, embeddings) return "✅ Documents processed successfully!" # ✅ Query document def query_document(question): if vector_store is None: return "❌ No documents processed.", None retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", google_api_key=GOOGLE_API_KEY) qa_chain = RetrievalQA.from_chain_type(llm=model, retriever=retriever) response = qa_chain.invoke({"query": question})["result"] tts = gTTS(text=response, lang="en") temp_audio_path = os.path.join(temp_dir, "response.mp3") tts.save(temp_audio_path) return response, temp_audio_path # ✅ Gradio UI with gr.Blocks() as demo: gr.Markdown("# 📄 AI-Powered Multi-Document Chatbot with Voice Output") file_dropdown = gr.Dropdown(choices=get_files_from_drive(), label="📂 Select Files", multiselect=True) process_button = gr.Button("🚀 Process Documents") user_input = gr.Textbox(label="🔎 Ask a Question") submit_button = gr.Button("💬 Get Answer") response_output = gr.Textbox(label="📝 Response") audio_output = gr.Audio(label="🔊 Audio Response") process_button.click(process_documents, inputs=file_dropdown, outputs=response_output) submit_button.click(query_document, inputs=user_input, outputs=[response_output, audio_output]) demo.launch()