sreesh2804 commited on
Commit
1a86be4
·
verified ·
1 Parent(s): 5a73e8a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import json
4
+ import logging
5
+ import threading
6
+ import gradio as gr
7
+ import google.generativeai as genai
8
+ from googleapiclient.discovery import build
9
+ from googleapiclient.http import MediaIoBaseDownload
10
+ from google.oauth2 import service_account
11
+ from langchain_community.vectorstores import Chroma
12
+ from langchain_community.embeddings import HuggingFaceEmbeddings
13
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
14
+ from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
15
+ from langchain.chains import RetrievalQA
16
+ from langchain_google_genai import ChatGoogleGenerativeAI
17
+ from PyPDF2 import PdfReader
18
+ from gtts import gTTS
19
+
20
+ # ✅ Configure logging
21
+ logging.basicConfig(level=logging.INFO)
22
+
23
+ # ✅ Load API Keys
24
+ logging.info("🔑 Loading API keys...")
25
+ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY_1")
26
+ SERVICE_ACCOUNT_JSON = os.getenv("SERVICE_ACCOUNT_JSON")
27
+
28
+ if not GOOGLE_API_KEY or not SERVICE_ACCOUNT_JSON:
29
+ logging.error("❌ Missing API Key or Service Account JSON.")
30
+ raise ValueError("❌ Missing API Key or Service Account JSON. Please add them as environment variables.")
31
+
32
+ os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
33
+ SERVICE_ACCOUNT_FILE = json.loads(SERVICE_ACCOUNT_JSON)
34
+ SCOPES = ["https://www.googleapis.com/auth/drive"]
35
+ FOLDER_ID = "1xqOpwgwUoiJYf9GkeuB4dayme4zJcujf"
36
+ creds = service_account.Credentials.from_service_account_info(SERVICE_ACCOUNT_FILE)
37
+ drive_service = build("drive", "v3", credentials=creds)
38
+
39
+ # ✅ Initialize variables
40
+ vector_store = None
41
+ file_id_map = {}
42
+ temp_dir = "./temp_downloads"
43
+ os.makedirs(temp_dir, exist_ok=True)
44
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
45
+
46
+ # ✅ Get list of files from Google Drive
47
+ def get_files_from_drive():
48
+ logging.info("📂 Fetching files from Google Drive...")
49
+ query = f"'{FOLDER_ID}' in parents and trashed = false"
50
+ results = drive_service.files().list(q=query, fields="files(id, name)").execute()
51
+ files = results.get("files", [])
52
+ global file_id_map
53
+ file_id_map = {file["name"]: file["id"] for file in files}
54
+ return list(file_id_map.keys()) if files else []
55
+
56
+ # ✅ Download file from Google Drive
57
+ def download_file(file_id, file_name):
58
+ file_path = os.path.join(temp_dir, file_name)
59
+ request = drive_service.files().get_media(fileId=file_id)
60
+ with open(file_path, "wb") as f:
61
+ downloader = MediaIoBaseDownload(f, request)
62
+ done = False
63
+ while not done:
64
+ _, done = downloader.next_chunk()
65
+ return file_path
66
+
67
+ # ✅ Process documents
68
+ def process_documents(selected_files):
69
+ global vector_store
70
+ docs = []
71
+ for file_name in selected_files:
72
+ file_path = download_file(file_id_map[file_name], file_name)
73
+ if file_name.endswith(".pdf"):
74
+ loader = PyPDFLoader(file_path)
75
+ elif file_name.endswith(".txt"):
76
+ loader = TextLoader(file_path)
77
+ elif file_name.endswith(".docx"):
78
+ loader = Docx2txtLoader(file_path)
79
+ else:
80
+ logging.warning(f"⚠️ Unsupported file type: {file_name}")
81
+ continue
82
+ docs.extend(loader.load())
83
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
84
+ split_docs = text_splitter.split_documents(docs)
85
+ vector_store = Chroma.from_documents(split_docs, embeddings)
86
+ return "✅ Documents processed successfully!"
87
+
88
+ # ✅ Query document
89
+ def query_document(question):
90
+ if vector_store is None:
91
+ return "❌ No documents processed.", None
92
+ retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
93
+ model = ChatGoogleGenerativeAI(model="gemini-2.0-flash", google_api_key=GOOGLE_API_KEY)
94
+ qa_chain = RetrievalQA.from_chain_type(llm=model, retriever=retriever)
95
+ response = qa_chain.invoke({"query": question})["result"]
96
+ tts = gTTS(text=response, lang="en")
97
+ temp_audio_path = os.path.join(temp_dir, "response.mp3")
98
+ tts.save(temp_audio_path)
99
+ return response, temp_audio_path
100
+
101
+ # ✅ Gradio UI
102
+ with gr.Blocks() as demo:
103
+ gr.Markdown("# 📄 AI-Powered Multi-Document Chatbot with Voice Output")
104
+ file_dropdown = gr.Dropdown(choices=get_files_from_drive(), label="📂 Select Files", multiselect=True)
105
+ process_button = gr.Button("🚀 Process Documents")
106
+ user_input = gr.Textbox(label="🔎 Ask a Question")
107
+ submit_button = gr.Button("💬 Get Answer")
108
+ response_output = gr.Textbox(label="📝 Response")
109
+ audio_output = gr.Audio(label="🔊 Audio Response")
110
+ process_button.click(process_documents, inputs=file_dropdown, outputs=response_output)
111
+ submit_button.click(query_document, inputs=user_input, outputs=[response_output, audio_output])
112
+
113
+ demo.launch()
114
+