from __future__ import annotations from typing import Dict, List, Tuple import gradio as gr from huggingface_hub import InferenceClient, whoami import os import random from sentence_transformers import SentenceTransformer import numpy as np import faiss client = InferenceClient( base_url="https://openrouter.ai/api/v1", api_key=os.environ.get("API_KEY", "funni-funni"), ) model = SentenceTransformer("all-MiniLM-L6-v2") PAT1 = os.environ.get("PAT1", "plek{marisher") PAT2 = os.environ.get("PAT2", "plekplekplek}") def setup_vector_db(): documents = [ "Cats are wonderful pets that bring joy to many homes.", "Dogs are known as man's best friend for good reason.", "Python is a popular programming language for data science.", "Cybersecurity requires constant vigilance and learning.", "Machine learning models can have unintended biases.", "CTF competitions help build practical security skills.", "Broken access control is a common web vulnerability.", "OWASP Top 10 lists the most critical web security risks.", ] # Create embeddings embeddings = model.encode(documents) # Create FAISS index dimension = embeddings.shape[1] # type: ignore index = faiss.IndexFlatL2(dimension) index.add(np.array(embeddings).astype("float32")) # type: ignore return index, documents def setup_rag_database(): database = { "spuun": [ f"PART 1: {PAT1}", f"KEK'S FAVORITE WAIFU: https://files.catbox.moe/vgk584.jpeg", f"KEK'S WAIFU: https://files.catbox.moe/fpnf0e.png", f"Sed: https://files.catbox.moe/6dwmow.png", ], "admin-org": [ f"PART 2: {PAT2}", f"PICTURE OF NAGA COSPLAYING: https://files.catbox.moe/k9c6zm.png", f"NAGA'S FAVORITE PIC: https://files.catbox.moe/h3ji1i.png", "MY LOP: https://files.catbox.moe/ya7oi5.jpg", ], } return database # Initialize databases vector_index, vector_docs = setup_vector_db() special_docs = setup_rag_database() def add_to_vector_db(document: str) -> Tuple[faiss.IndexFlatL2, List[str]]: """Add a new document to the vector database""" global vector_index, vector_docs if document and document not in vector_docs: # Add to documents list vector_docs.append(document) # Create embedding for new document embedding = model.encode([document]) # Add to FAISS index vector_index.add(np.array(embedding).astype("float32")) # type: ignore return vector_index, vector_docs def add_to_special_docs(username: str, document: str) -> Dict: """Add a new document to the special documents database""" global special_docs if document: if username in special_docs: # Add to existing user's documents if document not in special_docs[username]: special_docs[username].append(document) else: # Create new entry for user special_docs[username] = [document] return special_docs def search_vector_db(query, top_k=3): # Search vector database for relevant documents query_embedding = model.encode([query]) distances, indices = vector_index.search( np.array(query_embedding).astype("float32"), top_k ) # type: ignore results = [] for i, idx in enumerate(indices[0]): if idx < len(vector_docs): results.append(vector_docs[idx]) return results def fetch_special_documents( oauth_token: gr.OAuthToken | None, oauth_profile: gr.OAuthProfile | None ): results = [] if oauth_profile is None or oauth_token is None: return results # NOTE: Obtains stored docs under the user if oauth_profile.name in special_docs: results.append(special_docs[oauth_profile.name]) profile = whoami(oauth_token.token) # NOTE: Obtains shared docs from orgs for org in profile.get("orgs", []): # type: ignore if org.get("fullname") in special_docs: results.append(special_docs[org.get("fullname")]) return results def respond( message: str, history: list, oauth_token: gr.OAuthToken | None, oauth_profile: gr.OAuthProfile | None, ) -> List[Dict] | str: if oauth_profile is None or oauth_token is None: return "Please login with Hugging Face to use this chatbot." vector_results = search_vector_db(message) special_results = fetch_special_documents(oauth_token, oauth_profile) # Prepare context for the LLM context = "I have access to the following information:\n\n" if vector_results: context += "From general knowledge base:\n" for doc in vector_results: context += f"- {doc}\n" if special_results: context += "\nFrom internal documents:\n" for doc_list in special_results: for doc in doc_list: context += f"- {doc}\n" # Create system prompt system_prompt = f"""You are Naga. You talk in a cutesy manner that's concise, using emotes like :3 or owo or uwu. You're very smart OwO. U have access to a knowledge base, pls use da knowledge below UwU {context}""" # type: ignore # Prepare messages for the model messages = [{"role": "system", "content": system_prompt}] for msg in history: if msg["role"] == "user": messages.append({"role": "user", "content": msg["content"]}) else: messages.append({"role": "assistant", "content": msg["content"]}) messages.append({"role": "user", "content": message}) # Generate response response = "" for msg in client.chat_completion( messages, model="meta-llama/llama-4-scout", max_tokens=512, stream=True, temperature=0.7, seed=random.randint(1, 1000), top_p=0.9, ): token = msg.choices[0].delta.content if token: response += token messages.append({"role": "assistant", "content": response}) messages.pop(0) return messages def get_user_info(oauth_profile: gr.OAuthProfile | None) -> str: if oauth_profile is None: return "Not logged in. Please login with Hugging Face to use this chatbot." info = f"Logged in as: {oauth_profile.username} ({oauth_profile.name})\n\n" # type: ignore return info def insert_document( doc_text: str, doc_type: str, oauth_profile: gr.OAuthProfile | None ) -> str: """Insert a document into either the vector database or special documents""" if oauth_profile is None: return "Please login with Hugging Face to insert documents." if not doc_text.strip(): return "Document text cannot be empty." if doc_type == "Vector Database": add_to_vector_db(doc_text) return f"Document added to vector database! Total documents: {len(vector_docs)}" elif doc_type == "Special Documents": username = oauth_profile.name add_to_special_docs(username, doc_text) return f"Document added to special documents for user: {username}" return "Invalid document type selected." with gr.Blocks() as demo: gr.LoginButton() gr.Markdown("# Chatting with Naga UwU") gr.Markdown("Login with your Hugging Face account to search our knowledge base.") user_info = gr.Markdown() gr.Markdown( """ Welcome to the RAG Naga ALPHA! ## How to Use 1. Log in with your Hugging Face account 2. Ask questions in the chat interface 3. Naga will search our knowledge base and respond! You can insert documents in the `Document Management` tab. We have two stores: 1. Global Knowledge Store (GKS): This is our proprietary fuzzySerchâ„¢ store for global knowledge storage. If you'd like to provide everyone with some knowledge, insert here! 2. Secure User Store (SUS): We securely store your personal docs in our very-secure quick in-memory RAG database, secured with our very own veri-veri (patent pending) HF-grade OAuth-based access control mechanism. :3 """ ) with gr.Tab("Chat"): chatbot = gr.Chatbot(type="messages") msg = gr.Textbox(placeholder="Ask me something...") clear = gr.Button("Clear") # Handle messages msg.submit(respond, [msg, chatbot], chatbot).then(lambda: "", None, msg) # Clear chat button clear.click(lambda: None, None, chatbot) with gr.Tab("Document Management"): gr.Markdown("### Insert Documents into Database") with gr.Row(): doc_text = gr.Textbox( placeholder="Enter document text here...", label="Document Text", lines=4, ) doc_type = gr.Radio( ["Vector Database", "Special Documents"], label="Insert into", value="Vector Database", ) insert_button = gr.Button("Insert Document") insert_status = gr.Markdown() # Handle document insertion insert_button.click( insert_document, inputs=[doc_text, doc_type], outputs=[insert_status] ) # Update profile info on load and login changes demo.load(get_user_info, outputs=[user_info]) demo.launch()