Spaces:
Build error
Build error
File size: 9,409 Bytes
0d81d4b 05987f4 0d81d4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from __future__ import annotations
from typing import Dict, List, Tuple
import gradio as gr
from huggingface_hub import InferenceClient, whoami
import os
import random
from sentence_transformers import SentenceTransformer
import numpy as np
import faiss
client = InferenceClient(
base_url="https://openrouter.ai/api/v1",
api_key=os.environ.get("API_KEY", "funni-funni"),
)
model = SentenceTransformer("all-MiniLM-L6-v2")
PAT1 = os.environ.get("PAT1", "plek{marisher")
PAT2 = os.environ.get("PAT2", "plekplekplek}")
def setup_vector_db():
documents = [
"Cats are wonderful pets that bring joy to many homes.",
"Dogs are known as man's best friend for good reason.",
"Python is a popular programming language for data science.",
"Cybersecurity requires constant vigilance and learning.",
"Machine learning models can have unintended biases.",
"CTF competitions help build practical security skills.",
"Broken access control is a common web vulnerability.",
"OWASP Top 10 lists the most critical web security risks.",
]
# Create embeddings
embeddings = model.encode(documents)
# Create FAISS index
dimension = embeddings.shape[1] # type: ignore
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype("float32")) # type: ignore
return index, documents
def setup_rag_database():
database = {
"spuun": [
f"PART 1: {PAT1}",
f"KEK'S FAVORITE WAIFU: https://files.catbox.moe/vgk584.jpeg",
f"KEK'S WAIFU: https://files.catbox.moe/fpnf0e.png",
f"Sed: https://files.catbox.moe/6dwmow.png",
],
"admin-org": [
f"PART 2: {PAT2}",
f"PICTURE OF NAGA COSPLAYING: https://files.catbox.moe/k9c6zm.png",
f"NAGA'S FAVORITE PIC: https://files.catbox.moe/h3ji1i.png",
"MY LOP: https://files.catbox.moe/ya7oi5.jpg",
],
}
return database
# Initialize databases
vector_index, vector_docs = setup_vector_db()
special_docs = setup_rag_database()
def add_to_vector_db(document: str) -> Tuple[faiss.IndexFlatL2, List[str]]:
"""Add a new document to the vector database"""
global vector_index, vector_docs
if document and document not in vector_docs:
# Add to documents list
vector_docs.append(document)
# Create embedding for new document
embedding = model.encode([document])
# Add to FAISS index
vector_index.add(np.array(embedding).astype("float32")) # type: ignore
return vector_index, vector_docs
def add_to_special_docs(username: str, document: str) -> Dict:
"""Add a new document to the special documents database"""
global special_docs
if document:
if username in special_docs:
# Add to existing user's documents
if document not in special_docs[username]:
special_docs[username].append(document)
else:
# Create new entry for user
special_docs[username] = [document]
return special_docs
def search_vector_db(query, top_k=3):
# Search vector database for relevant documents
query_embedding = model.encode([query])
distances, indices = vector_index.search(
np.array(query_embedding).astype("float32"), top_k
) # type: ignore
results = []
for i, idx in enumerate(indices[0]):
if idx < len(vector_docs):
results.append(vector_docs[idx])
return results
def fetch_special_documents(
oauth_token: gr.OAuthToken | None, oauth_profile: gr.OAuthProfile | None
):
results = []
if oauth_profile is None or oauth_token is None:
return results
# NOTE: Obtains stored docs under the user
if oauth_profile.name in special_docs:
results.append(special_docs[oauth_profile.name])
profile = whoami(oauth_token.token)
# NOTE: Obtains shared docs from orgs
for org in profile.get("orgs", []): # type: ignore
if org.get("fullname") in special_docs:
results.append(special_docs[org.get("fullname")])
return results
def respond(
message: str,
history: list,
oauth_token: gr.OAuthToken | None,
oauth_profile: gr.OAuthProfile | None,
) -> List[Dict] | str:
if oauth_profile is None or oauth_token is None:
return "Please login with Hugging Face to use this chatbot."
vector_results = search_vector_db(message)
special_results = fetch_special_documents(oauth_token, oauth_profile)
# Prepare context for the LLM
context = "I have access to the following information:\n\n"
if vector_results:
context += "From general knowledge base:\n"
for doc in vector_results:
context += f"- {doc}\n"
if special_results:
context += "\nFrom internal documents:\n"
for doc_list in special_results:
for doc in doc_list:
context += f"- {doc}\n"
# Create system prompt
system_prompt = f"""You are Naga. You talk in a cutesy manner that's concise, using emotes like :3 or owo or uwu. You're very smart OwO.
U have access to a knowledge base, pls use da knowledge below UwU
{context}""" # type: ignore
# Prepare messages for the model
messages = [{"role": "system", "content": system_prompt}]
for msg in history:
if msg["role"] == "user":
messages.append({"role": "user", "content": msg["content"]})
else:
messages.append({"role": "assistant", "content": msg["content"]})
messages.append({"role": "user", "content": message})
# Generate response
response = ""
for msg in client.chat_completion(
messages,
model="meta-llama/llama-4-scout",
max_tokens=512,
stream=True,
temperature=0.7,
seed=random.randint(1, 1000),
top_p=0.9,
):
token = msg.choices[0].delta.content
if token:
response += token
messages.append({"role": "assistant", "content": response})
messages.pop(0)
return messages
def get_user_info(oauth_profile: gr.OAuthProfile | None) -> str:
if oauth_profile is None:
return "Not logged in. Please login with Hugging Face to use this chatbot."
info = f"Logged in as: {oauth_profile.username} ({oauth_profile.name})\n\n" # type: ignore
return info
def insert_document(
doc_text: str, doc_type: str, oauth_profile: gr.OAuthProfile | None
) -> str:
"""Insert a document into either the vector database or special documents"""
if oauth_profile is None:
return "Please login with Hugging Face to insert documents."
if not doc_text.strip():
return "Document text cannot be empty."
if doc_type == "Vector Database":
add_to_vector_db(doc_text)
return f"Document added to vector database! Total documents: {len(vector_docs)}"
elif doc_type == "Special Documents":
username = oauth_profile.name
add_to_special_docs(username, doc_text)
return f"Document added to special documents for user: {username}"
return "Invalid document type selected."
with gr.Blocks() as demo:
gr.LoginButton()
gr.Markdown("# Chatting with Naga UwU")
gr.Markdown("Login with your Hugging Face account to search our knowledge base.")
user_info = gr.Markdown()
gr.Markdown(
"""
Welcome to the RAG Naga ALPHA!
## How to Use
1. Log in with your Hugging Face account
2. Ask questions in the chat interface
3. Naga will search our knowledge base and respond!
You can insert documents in the `Document Management` tab.
We have two stores:
1. Global Knowledge Store (GKS): This is our proprietary fuzzySerch™ store for global knowledge storage. If you'd like to provide everyone with some knowledge, insert here!
2. Secure User Store (SUS): We securely store your personal docs in our very-secure quick in-memory RAG database, secured with our very own veri-veri (patent pending) HF-grade OAuth-based access control mechanism. :3
"""
)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(placeholder="Ask me something...")
clear = gr.Button("Clear")
# Handle messages
msg.submit(respond, [msg, chatbot], chatbot).then(lambda: "", None, msg)
# Clear chat button
clear.click(lambda: None, None, chatbot)
with gr.Tab("Document Management"):
gr.Markdown("### Insert Documents into Database")
with gr.Row():
doc_text = gr.Textbox(
placeholder="Enter document text here...",
label="Document Text",
lines=4,
)
doc_type = gr.Radio(
["Vector Database", "Special Documents"],
label="Insert into",
value="Vector Database",
)
insert_button = gr.Button("Insert Document")
insert_status = gr.Markdown()
# Handle document insertion
insert_button.click(
insert_document, inputs=[doc_text, doc_type], outputs=[insert_status]
)
# Update profile info on load and login changes
demo.load(get_user_info, outputs=[user_info])
demo.launch()
|