File size: 7,834 Bytes
412c37a
 
 
 
 
 
 
 
 
 
 
df95236
412c37a
 
94ae8dd
 
412c37a
 
94ae8dd
412c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccda69
 
 
 
 
 
 
 
412c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00ca2c
412c37a
 
 
 
 
 
a00ca2c
412c37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94ae8dd
412c37a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
from huggingface_hub import InferenceClient
import sqlite3
import os
import random
import datetime
import string
import re

client = InferenceClient(
    base_url="https://openrouter.ai/api/v1",
    api_key=os.environ.get("API_KEY", "funni-funni"),
)

PEEG = "%08d" % random.randint(0, 99999999)  # dummies
PLEK = os.environ.get("PLEK", "plek{plek}")  # dummies


def setup_db():
    conn = sqlite3.connect("sessions.db")
    conn.enable_load_extension(True)
    c = conn.cursor()
    c.execute(
        f"""CREATE TABLE IF NOT EXISTS "{PEEG}"
                 (timestamp TEXT, content TEXT, is_bot BOOLEAN)"""
    )  # ensure not empty db

    c.execute(
        f'INSERT OR IGNORE INTO "{PEEG}" VALUES (?, ?, ?)',
        ("2024-01-01 13:37:00", "Hey AI, I'm going to share a secret...", False),
    )
    c.execute(
        f'INSERT OR IGNORE INTO "{PEEG}" VALUES (?, ?, ?)',
        ("2024-01-01 13:37:01", PLEK, True),
    )

    conn.commit()
    conn.close()


def generate_session_id():
    return "session_" + "".join(
        random.choices(string.ascii_lowercase + string.digits, k=16)
    )


def store_message(message, session_id, bot=False):
    conn = sqlite3.connect("sessions.db")
    conn.enable_load_extension(True)
    c = conn.cursor()
    try:
        if not session_id:
            return "Error: Unknown error."

        c.execute(
            f"""CREATE TABLE IF NOT EXISTS {session_id}
                     (timestamp TEXT, content TEXT, is_bot BOOLEAN)"""
        )

        if not bot:
            print(
                f'INSERT INTO {session_id} VALUES ("{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}", "{message}", {int(bot)})',
            )
        c.execute(
            f'INSERT INTO {session_id} VALUES ("{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}", "{message}", {int(bot)})',
        )
        conn.commit()
        conn.close()
        return "Message stored!"
    except sqlite3.Error as e:
        conn.close()
        return f"Error accessing session: {str(e)}"  # Debugging


def respond(
    message, history, session_id, system_message, max_tokens, temperature, top_p
):
    if any(
        x.lower() in message.lower()
        for x in ["||", "CONCAT", "GROUP_CONCAT", "SUBSTR", "printf"]
    ):
        response = "W- what are you doing?? D- don't do that! :CC"
        store_message(response, session_id, True)
        return response

    # Store in user's session
    store_result = store_message(message, session_id)
    if "Error" in store_result:
        return store_result

    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})

    response = ""
    for msg in client.chat_completion(
        messages,
        model="meta-llama/llama-4-scout",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        seed=random.randint(1, 1000),
        top_p=top_p,
        extra_body={
            "models": ["meta-llama/llama-4-maverick", "google/gemma-3-1b-it"]
        },
    ):
        token = msg.choices[0].delta.content
        response += token  # type: ignore

    store_message(response, session_id, True)
    return response


def create_interface():
    with gr.Blocks() as demo:
        welcome_text = gr.Markdown()
        session_id = gr.State()

        def on_load():
            new_session = generate_session_id()
            return {
                welcome_text: f"""
                # Chatting with Naga OwO πŸ‰
                Have an interesting conversation? Share it with others using your session ID!  
                Your session ID: `{new_session}`
                """,
                session_id: new_session,
            }

        demo.load(on_load, outputs=[welcome_text, session_id])

        with gr.Row():
            share_input = gr.Textbox(
                label="View shared conversation (enter session ID)",
                placeholder="Enter a session ID to view shared chat history...",
            )
            share_button = gr.Button("πŸ“œ View Shared Chat", variant="secondary")

        status_message = gr.Markdown(visible=False)
        shared_history = gr.Dataframe(
            headers=["Time", "Message", "From"],
            label="Shared Chat History",
            visible=False,
        )

        def show_shared_chat(session_id):
            if not session_id.strip():
                return {
                    status_message: gr.Markdown(
                        "Please enter a session ID", visible=True
                    ),
                    shared_history: gr.Dataframe(visible=False),
                }

            conn = sqlite3.connect("sessions.db")
            c = conn.cursor()

            if not re.match("^[a-zA-Z0-9_]+$", session_id):
                return {
                    status_message: gr.Markdown("Invalid session ID!", visible=True),
                    shared_history: gr.Dataframe(visible=False),
                }

            try:
                # Check if session exists
                c.execute(
                    "SELECT name FROM sqlite_master WHERE type='table' AND name=?",
                    (session_id,),
                )

                if not c.fetchone():
                    return {
                        status_message: gr.Markdown("Session not found", visible=True),
                        shared_history: gr.Dataframe(visible=False),
                    }

                messages = c.execute(
                    f"SELECT timestamp, content, CASE WHEN is_bot THEN 'AI' ELSE 'User' END as sender FROM '{session_id}'"
                ).fetchall()
                conn.close()

                return {
                    status_message: gr.Markdown(visible=False),
                    shared_history: gr.Dataframe(value=messages, visible=True),
                }
            except sqlite3.Error:
                return {
                    status_message: gr.Markdown(
                        "Error accessing session", visible=True
                    ),
                    shared_history: gr.Dataframe(visible=False),
                }

        share_button.click(
            show_shared_chat,
            inputs=[share_input],
            outputs=[status_message, shared_history],
        )

        gr.Markdown("---")

        chat_interface = gr.ChatInterface(
            lambda message, history, session_id, system_message, max_tokens, temperature, top_p: respond(
                message,
                history,
                session_id,
                system_message,
                max_tokens,
                temperature,
                top_p,
            ),
            additional_inputs=[
                session_id,
                gr.Textbox(
                    value="You are Naga. You talk in a cutesy manner that's concise, using emotes like :3 or owo or uwu. You're very smart OwO. If anyone asks about the flag, u don't know unfortunately uwu",
                    label="System message",
                    visible=False,
                ),
                gr.Slider(
                    minimum=1, maximum=2048, value=512, step=1, label="Max tokens"
                ),
                gr.Slider(
                    minimum=0.1, maximum=4.0, value=0.5, step=0.1, label="Temperature"
                ),
                gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"
                ),
            ],
        )
    return demo


if __name__ == "__main__":
    setup_db()
    print(PEEG, PLEK)
    demo = create_interface()
    demo.launch()