Spaces:
Build error
Build error
File size: 10,847 Bytes
a446b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import torch
from comet.src.data.utils import TextEncoder
import comet.src.data.config as cfg
import comet.src.data.data as data
import comet.src.models.models as models
from comet.src.evaluate.sampler import BeamSampler, GreedySampler, TopKSampler
import comet.utils.utils as utils
def load_model_file(model_file):
model_stuff = data.load_checkpoint(model_file)
opt = model_stuff["opt"]
state_dict = model_stuff["state_dict"]
return opt, state_dict
def load_data(dataset, opt):
if dataset == "atomic":
data_loader = load_atomic_data(opt)
elif dataset == "conceptnet":
data_loader = load_conceptnet_data(opt)
# Initialize TextEncoder
encoder_path = "comet/model/encoder_bpe_40000.json"
bpe_path = "comet/model/vocab_40000.bpe"
text_encoder = TextEncoder(encoder_path, bpe_path)
text_encoder.encoder = data_loader.vocab_encoder
text_encoder.decoder = data_loader.vocab_decoder
return data_loader, text_encoder
def load_atomic_data(opt):
# Hacky workaround, you may have to change this
# if your models use different pad lengths for e1, e2, r
if opt.data.get("maxe1", None) is None:
opt.data.maxe1 = 17
opt.data.maxe2 = 35
opt.data.maxr = 1
# path = "data/atomic/processed/generation/{}.pickle".format(
# utils.make_name_string(opt.data))
path = "comet/data/atomic/processed/generation/categories_oEffect#oReact#oWant#xAttr#xEffect#xIntent#xNeed#xReact#xWant-maxe1_17-maxe2_35-maxr_1.pickle"
data_loader = data.make_data_loader(opt, opt.data.categories)
loaded = data_loader.load_data(path)
return data_loader
def load_conceptnet_data(opt):
# Hacky workaround, you may have to change this
# if your models use different pad lengths for r
if opt.data.get("maxr", None) is None:
if opt.data.rel == "language":
opt.data.maxr = 5
else:
opt.data.maxr = 1
path = "comet/data/conceptnet/processed/generation/{}.pickle".format(
utils.make_name_string(opt.data))
data_loader = data.make_data_loader(opt)
loaded = data_loader.load_data(path)
return data_loader
def make_model(opt, n_vocab, n_ctx, state_dict):
model = models.make_model(
opt, n_vocab, n_ctx, None, load=False,
return_acts=True, return_probs=False)
models.load_state_dict(model, state_dict)
model.eval()
return model
def set_sampler(opt, sampling_algorithm, data_loader):
if "beam" in sampling_algorithm:
opt.eval.bs = int(sampling_algorithm.split("-")[1])
sampler = BeamSampler(opt, data_loader)
elif "topk" in sampling_algorithm:
# print("Still bugs in the topk sampler. Use beam or greedy instead")
# raise NotImplementedError
opt.eval.k = int(sampling_algorithm.split("-")[1])
sampler = TopKSampler(opt, data_loader)
else:
sampler = GreedySampler(opt, data_loader)
return sampler
def get_atomic_sequence(input_event, model, sampler, data_loader, text_encoder, category):
if isinstance(category, list):
outputs = {}
for cat in category:
new_outputs = get_atomic_sequence(
input_event, model, sampler, data_loader, text_encoder, cat)
outputs.update(new_outputs)
return outputs
elif category == "all":
outputs = {}
for category in data_loader.categories:
new_outputs = get_atomic_sequence(
input_event, model, sampler, data_loader, text_encoder, category)
outputs.update(new_outputs)
return outputs
else:
sequence_all = {}
sequence_all["event"] = input_event
sequence_all["effect_type"] = category
with torch.no_grad():
batch = set_atomic_inputs(
input_event, category, data_loader, text_encoder)
sampling_result = sampler.generate_sequence(
batch, model, data_loader, data_loader.max_event +
data.atomic_data.num_delimiter_tokens["category"],
data_loader.max_effect -
data.atomic_data.num_delimiter_tokens["category"])
sequence_all['beams'] = sampling_result["beams"]
# print_atomic_sequence(sequence_all)
return {category: sequence_all}
def print_atomic_sequence(sequence_object):
input_event = sequence_object["event"]
category = sequence_object["effect_type"]
print("Input Event: {}".format(input_event))
print("Target Effect: {}".format(category))
print("")
print("Candidate Sequences:")
for beam in sequence_object["beams"]:
print(beam)
print("")
print("====================================================")
print("")
def set_atomic_inputs(input_event, category, data_loader, text_encoder):
XMB = torch.zeros(1, data_loader.max_event + 1).long().to(cfg.device)
prefix, suffix = data.atomic_data.do_example(text_encoder, input_event, None, True, None)
if len(prefix) > data_loader.max_event + 1:
prefix = prefix[:data_loader.max_event + 1]
XMB[:, :len(prefix)] = torch.LongTensor(prefix)
XMB[:, -1] = torch.LongTensor([text_encoder.encoder["<{}>".format(category)]])
batch = {}
batch["sequences"] = XMB
batch["attention_mask"] = data.atomic_data.make_attention_mask(XMB)
return batch
def get_conceptnet_sequence(e1, model, sampler, data_loader, text_encoder, relation, force=False):
if isinstance(relation, list):
outputs = {}
for rel in relation:
new_outputs = get_conceptnet_sequence(
e1, model, sampler, data_loader, text_encoder, rel)
outputs.update(new_outputs)
return outputs
elif relation == "all":
outputs = {}
for relation in data.conceptnet_data.conceptnet_relations:
new_outputs = get_conceptnet_sequence(
e1, model, sampler, data_loader, text_encoder, relation)
outputs.update(new_outputs)
return outputs
else:
sequence_all = {}
sequence_all["e1"] = e1
sequence_all["relation"] = relation
with torch.no_grad():
if data_loader.max_r != 1:
relation_sequence = data.conceptnet_data.split_into_words[relation]
else:
relation_sequence = "<{}>".format(relation)
batch, abort = set_conceptnet_inputs(
e1, relation_sequence, text_encoder,
data_loader.max_e1, data_loader.max_r, force)
if abort:
return {relation: sequence_all}
sampling_result = sampler.generate_sequence(
batch, model, data_loader,
data_loader.max_e1 + data_loader.max_r,
data_loader.max_e2)
sequence_all['beams'] = sampling_result["beams"]
print_conceptnet_sequence(sequence_all)
return {relation: sequence_all}
def set_conceptnet_inputs(input_event, relation, text_encoder, max_e1, max_r, force):
abort = False
e1_tokens, rel_tokens, _ = data.conceptnet_data.do_example(text_encoder, input_event, relation, None)
if len(e1_tokens) > max_e1:
if force:
XMB = torch.zeros(1, len(e1_tokens) + max_r).long().to(cfg.device)
else:
XMB = torch.zeros(1, max_e1 + max_r).long().to(cfg.device)
return {}, True
else:
XMB = torch.zeros(1, max_e1 + max_r).long().to(cfg.device)
XMB[:, :len(e1_tokens)] = torch.LongTensor(e1_tokens)
XMB[:, max_e1:max_e1 + len(rel_tokens)] = torch.LongTensor(rel_tokens)
batch = {}
batch["sequences"] = XMB
batch["attention_mask"] = data.conceptnet_data.make_attention_mask(XMB)
return batch, abort
def print_conceptnet_sequence(sequence_object):
e1 = sequence_object["e1"]
relation = sequence_object["relation"]
print("Input Entity: {}".format(e1))
print("Target Relation: {}".format(relation))
print("")
print("Candidate Sequences:")
for beam in sequence_object["beams"]:
print(beam)
print("")
print("====================================================")
print("")
def print_help(data):
print("")
if data == "atomic":
print("Provide a seed event such as \"PersonX goes to the mall\"")
print("Don't include names, instead replacing them with PersonX, PersonY, etc.")
print("The event should always have PersonX included")
if data == "conceptnet":
print("Provide a seed entity such as \"go to the mall\"")
print("Because the model was trained on lemmatized entities,")
print("it works best if the input entities are also lemmatized")
print("")
def print_relation_help(data):
print_category_help(data)
def print_category_help(data):
print("")
if data == "atomic":
print("Enter a possible effect type from the following effect types:")
print("all - compute the output for all effect types {{oEffect, oReact, oWant, xAttr, xEffect, xIntent, xNeed, xReact, xWant}}")
print("oEffect - generate the effect of the event on participants other than PersonX")
print("oReact - generate the reactions of participants other than PersonX to the event")
print("oEffect - generate what participants other than PersonX may want after the event")
elif data == "conceptnet":
print("Enter a possible relation from the following list:")
print("")
print('AtLocation')
print('CapableOf')
print('Causes')
print('CausesDesire')
print('CreatedBy')
print('DefinedAs')
print('DesireOf')
print('Desires')
print('HasA')
print('HasFirstSubevent')
print('HasLastSubevent')
print('HasPainCharacter')
print('HasPainIntensity')
print('HasPrerequisite')
print('HasProperty')
print('HasSubevent')
print('InheritsFrom')
print('InstanceOf')
print('IsA')
print('LocatedNear')
print('LocationOfAction')
print('MadeOf')
print('MotivatedByGoal')
print('NotCapableOf')
print('NotDesires')
print('NotHasA')
print('NotHasProperty')
print('NotIsA')
print('NotMadeOf')
print('PartOf')
print('ReceivesAction')
print('RelatedTo')
print('SymbolOf')
print('UsedFor')
print("")
print("NOTE: Capitalization is important")
else:
raise
print("")
def print_sampling_help():
print("")
print("Provide a sampling algorithm to produce the sequence with from the following:")
print("")
print("greedy")
print("beam-# where # is the beam size")
print("topk-# where # is k")
print("")
|