File size: 12,228 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import torch.nn as nn
import torch.nn.functional as F

import comet.src.data.data as data
import comet.src.data.config as cfg
import comet.src.models.utils as model_utils
import comet.src.evaluate.utils as eval_utils
import comet.src.train.batch as batch_utils

def make_sampler(sampler_type, opt, *args, **kwargs):
    print("Initializing Greedy Sampler")
    return GreedySampler(opt, *args, **kwargs)

class Sampler():
    def __init__(self, opt, data_loader, batch_mode=False):
        # Token on which to end sampling
        self.end_token = data_loader.vocab_encoder[data.end_token]

        self.opt = opt

    def generate_sequence(self, batch, model):
        raise


class GreedySampler(Sampler):
    def __init__(self, opt, data_loader, batch_mode=True):
        super(GreedySampler, self).__init__(opt, data_loader)

    def append_batch(self, X, next_idx, mask):
        next_pos = X[:, -1:, 1] + 1
        next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1)
        next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
        return torch.cat((X, next_x), 1), next_mask

    def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
        XMB = batch["sequences"][:, :start_idx]
        MMB = batch["attention_mask"][:, :start_idx]

        XMB = model_utils.prepare_position_embeddings(
            self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))

        _, lp = model(
            XMB.unsqueeze(1), sequence_mask=MMB)
        lm_probs = F.log_softmax(lp, dim=-1)

        values, indices = lm_probs[:, -1, :].max(dim=-1)
        seqs = indices.clone().unsqueeze(1)

        loss = values
        counts = 1
        next_pos = XMB[:, -1:, 1] + 1
        next_x = torch.cat((indices.view(-1, 1), next_pos), -1).unsqueeze(1)
        XMB = torch.cat((XMB, next_x), 1)
        MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)

        # Sample from top k

        for _ in range(self.opt.eval.smax):
            _, lp = model(
                XMB.unsqueeze(1), sequence_mask=MMB)
            lm_probs = F.log_softmax(lp, dim=-1)

            # Sample from top k
            values, next_idx = lm_probs[:, -1, :].max(dim=-1)

            loss += values
            counts += 1

            next_idx = next_idx.unsqueeze(1)

            seqs = torch.cat([seqs, next_idx], 1)

            if (next_idx.item() == self.end_token) or (_ == end_len - 1):
                break

            XMB, MMB = self.append_batch(XMB, next_idx, MMB)

        beams = []

        for beam in seqs:
            beams.append(" ".join("".join(
                [data_loader.vocab_decoder[tok.item()].replace(
                    '</w>', ' ').replace('\n', '')
                 for tok in beam if tok != self.end_token]).split()))

        sampling_result = {
            "sequence": beams[0],
            "beams": beams,
            "beam_losses": [loss.item()],
            "loss": loss.item(),
            "beam_lengths": [counts],
            "length": counts
        }

        return sampling_result


class TopKSampler(Sampler):
    def __init__(self, opt, data_loader, batch_mode=True):
        super(TopKSampler, self).__init__(opt, data_loader)

    def append_batch(self, X, next_idx, mask):
        next_pos = X[:, -1:, 1] + 1
        next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1)
        next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
        return torch.cat((X, next_x), 1), next_mask

    def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
        # start_idx = context_size_event + 1
        # start_idx = max_e1 + max_r
        # end_idx = context_size_effect - 1
        # end_idx = max_e2
        XMB = batch["sequences"][:, :start_idx]
        MMB = batch["attention_mask"][:, :start_idx]

        XMB = model_utils.prepare_position_embeddings(
            self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))

        _, lp = model(
            XMB.unsqueeze(1), sequence_mask=MMB)
        lm_probs = F.log_softmax(lp, dim=-1)

        values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k)
        seqs = indices.t().clone()

        losses = - values.view(-1, 1)

        ended = (seqs == self.end_token).float()
        counts = (1 - ended)
        XMB = XMB.repeat(self.opt.eval.k, 1, 1)
        MMB = MMB.repeat(self.opt.eval.k, 1)
        next_pos = XMB[:, -1:, 1] + 1
        next_x = torch.cat((indices.view(self.opt.eval.k, -1), next_pos), -1).unsqueeze(1)
        XMB = torch.cat((XMB, next_x), 1)
        MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)

        # Sample from top k

        for _ in range(end_len):
            _, lp = model(XMB.unsqueeze(1), sequence_mask=MMB)
            lm_probs = F.log_softmax(lp, dim=-1)

            # Sample from top k
            values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k)
            choice = torch.multinomial(values.exp(), 1)
            next_idx = indices.gather(-1, choice)

            ended = ended + (next_idx == self.end_token).float() * (1 - ended)

            next_idx = next_idx * (1 - ended).long() + ended.long() * self.end_token

            counts += (1 - ended)

            seqs = torch.cat([seqs, next_idx], 1)

            if ended.sum().item() == self.opt.eval.k:
                break

            losses -= values.gather(-1, choice) * (1 - ended)

            XMB, MMB = self.append_batch(XMB, next_idx, MMB)

        beams = []

        for beam in seqs:
            beams.append(" ".join("".join(
                [data_loader.vocab_decoder[tok.item()].replace(
                    '</w>', ' ').replace('\n', '')
                 for tok in beam if tok != self.end_token]).split()))

        sampling_result = {
            "sequence": beams[0],
            "beams": beams,
            "beam_losses": losses.squeeze().tolist(),
            "loss": losses[0].item(),
            "beam_lengths": counts.long().squeeze().tolist(),
            "length": counts[0].long().item()
        }

        return sampling_result


class BeamSampler(TopKSampler):
    def __init__(self, opt, data_loader, batch_mode=True, scorer=None):
        super(BeamSampler, self).__init__(opt, data_loader, batch_mode)

        self.kill_mask = torch.ones(opt.eval.bs, opt.eval.bs).to(cfg.device) * 9000
        self.kill_mask[:, 0] = 0

    def make_batch(self, X):
        X = np.array(X)
        assert X.ndim in [1, 2]
        if X.ndim == 1:
            X = np.expand_dims(X, axis=0)
        pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1])
        pos_enc = np.expand_dims(pos_enc, axis=0)
        batch = np.stack([X, pos_enc], axis=-1)
        batch = torch.tensor(batch, dtype=torch.long).to(device)
        return batch

    def append_batch(self, X, beam_toks, mask):
        next_pos = X[:, -1:, 1] + 1
        next_x = torch.cat((beam_toks.unsqueeze(1), next_pos), -1).unsqueeze(1)
        next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
        return torch.cat((X, next_x), 1), next_mask

    def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
        # start_idx = context_size_event + 1
        # start_idx = max_e1 + max_r
        # end_idx = context_size_effect - 1
        # end_idx = max_e2
        XMB = batch["sequences"][:, :start_idx]
        MMB = batch["attention_mask"][:, :start_idx]

        XMB = model_utils.prepare_position_embeddings(
            self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))

        tokens = []
        beam_losses = []
        # Beam Search
        beam_lls, beam_toks, beam_seqs = None, None, None
        _, lp = model(XMB.unsqueeze(1), sequence_mask=MMB)
        lm_probs = F.log_softmax(lp, dim=-1)
        dist = lm_probs[:, -1, :].squeeze()
        beam_lls, beam_toks = dist.topk(self.opt.eval.bs)
        beam_losses.append(beam_lls)

        ended = (beam_toks == self.end_token).float()
        counts = (2 - ended)
        beam_toks = beam_toks.unsqueeze(1)
        beam_seqs = beam_toks.clone()
        XMB = XMB.repeat(self.opt.eval.bs, 1, 1)
        MMB = MMB.repeat(self.opt.eval.bs, 1)
        next_pos = XMB[:, -1:, 1] + 1
        next_x = torch.cat((beam_toks, next_pos), -1).unsqueeze(1)
        XMB = torch.cat((XMB, next_x), 1)
        MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)

        for _ in range(end_len):

            # Compute distribution for current beam
            _, lp = model(
                XMB.unsqueeze(1), sequence_mask=MMB)
            lm_probs = F.log_softmax(lp, dim=-1)
            dist = lm_probs[:, -1, :].squeeze()

            # get hypothesis tokens for distribution
            hyp_beam_lls, hyp_beam_toks = dist.topk(self.opt.eval.bs)

            # Compute masks and expand beam
            expanded_ended = ended.unsqueeze(1).repeat(1, self.opt.eval.bs)
            hypothesis_mask = expanded_ended * self.kill_mask + (1 - expanded_ended)

            paper_results = False

            if paper_results:
                # Results from paper with slightly buggy beam search
                current_beam_lls = beam_lls.unsqueeze(1).repeat(
                    1, self.opt.eval.bs).view(self.opt.eval.bs**2)
            else:
                # Current beam search implementation
                current_beam_lls = beam_losses[-1].unsqueeze(1).repeat(
                    1, self.opt.eval.bs).view(self.opt.eval.bs**2)

            # Compute losses of hypotheses, masking those that have ended
            hyp_beam_lls = (hyp_beam_lls.view(self.opt.eval.bs**2) *
                            hypothesis_mask.view(-1)) + current_beam_lls

            # Get normalizer for sequences
            temp_counts = counts.unsqueeze(1).repeat(1, self.opt.eval.bs).view(
                self.opt.eval.bs ** 2)

            # Select best beams with lowest aggregate loss
            beam_lls, top_beam_idxs = (hyp_beam_lls / temp_counts).topk(self.opt.eval.bs)

            # Update placements in beam based on selecetion
            beam_losses = [i.index_select(0, top_beam_idxs // self.opt.eval.bs)
                           for i in beam_losses]
            ended = ended.index_select(0, top_beam_idxs // self.opt.eval.bs)
            counts = temp_counts.index_select(0, top_beam_idxs)

            # Save beam losses
            beam_losses.append(beam_lls * counts)

            # Update beam tokens
            ended_mask = (1 - ended).long()
            end_replacement = (self.end_token * ended).long()
            next_toks = hyp_beam_toks.view(-1)[top_beam_idxs]
            beam_toks = next_toks * ended_mask + end_replacement

            # Update ended and counts
            ended = ended + (beam_toks == self.end_token).float() * (1 - ended)
            counts = counts + (1 - ended)

            # Update beam sequences
            beam_seqs = beam_seqs.t().repeat(self.opt.eval.bs, 1).t().contiguous().view(
                self.opt.eval.bs**2, -1)[top_beam_idxs]
            beam_seqs = torch.cat((beam_seqs, beam_toks.unsqueeze(1)), dim=1)

            # I have no idea what's going on but Ari's on point with it
            XMB = XMB.transpose(0, 1).transpose(1, 2).repeat(
                self.opt.eval.bs, 1, 1).transpose(2, 1).transpose(
                1, 0).contiguous().view(
                self.opt.eval.bs**2, XMB.size(1), XMB.size(2))[top_beam_idxs]

            XMB, MMB = self.append_batch(XMB, beam_toks, MMB)

            if (beam_toks == self.end_token).sum().item() == self.opt.eval.bs:
                break

        beams = []

        for beam in beam_seqs:
            beams.append(" ".join("".join(
                [data_loader.vocab_decoder[tok.item()].replace(
                    '</w>', ' ').replace('\n', '')
                 for tok in beam if tok != self.end_token]).split()))

        sampling_result = {
            "sequence": beams[0],
            "beams": beams,
            "beam_losses": beam_lls.tolist(),
            "loss": beam_lls[0].item(),
            "beam_lengths": counts.tolist(),
            "length": counts[0].item()
        }

        return sampling_result