Spaces:
Running
Running
File size: 7,700 Bytes
d5c23d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import streamlit as st
import os
from typing import List, Tuple, Optional
from pinecone import Pinecone
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from dotenv import load_dotenv
from RAG import RAG
import logging
from image_scraper import DigitalCommonwealthScraper
import shutil
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page configuration
st.set_page_config(
page_title="Boston Public Library Chatbot",
page_icon="🤖",
layout="wide"
)
def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]:
"""Initialize the language model and embeddings."""
try:
load_dotenv()
if "llm" not in st.session_state:
# Initialize OpenAI model
st.session_state.llm = ChatOpenAI(
model="gpt-4o-mini", # Changed from gpt-4o-mini which appears to be a typo
temperature=0,
timeout=60, # Added reasonable timeout
max_retries=2
)
if "embeddings" not in st.session_state:
# Initialize embeddings
st.session_state.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
#model_name="sentence-transformers/all-MiniLM-L6-v2"
)
if "pinecone" not in st.session_state:
pinecone_api_key = os.getenv("PINECONE_API_KEY")
INDEX_NAME = 'bpl-test'
#initialize vectorstore
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index(INDEX_NAME)
st.session_state.pinecone = PineconeVectorStore(index=index, embedding=st.session_state.embeddings)
if "vectorstore" not in st.session_state:
#st.session_state.vectorstore = CloudSQLVectorStore(embedding=st.session_state.embeddings)
st.session_state.vectorstore = st.session_state.pinecone
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
st.error(f"Failed to initialize models: {str(e)}")
return None, None
def process_message(
query: str,
llm: ChatOpenAI,
vectorstore: PineconeVectorStore,
) -> Tuple[str, List]:
"""Process the user message using the RAG system."""
try:
response, sources = RAG(
query=query,
llm=llm,
vectorstore=vectorstore,
)
return response, sources
except Exception as e:
logger.error(f"Error in process_message: {str(e)}")
return f"Error processing message: {str(e)}", []
def display_sources(sources: List) -> None:
"""Display sources with minimal output: content preview, source, URL, and image if available."""
if not sources:
st.info("No sources available for this response.")
return
st.subheader("Sources")
for doc in sources:
try:
source = doc.metadata.get("source", "Unknown Source")
title = doc.metadata.get("title_info_primary_tsi", "Unknown Title")
with st.expander(f"{title}"):
# Content preview
if hasattr(doc, 'page_content'):
st.markdown(f"**Content:** {doc.page_content[:100]} ...")
# Extract URL
doc_url = doc.metadata.get("URL", "").strip()
if not doc_url and source:
doc_url = f"https://www.digitalcommonwealth.org/search/{source}"
st.markdown(f"**Source ID:** {source}")
st.markdown(f"**URL:** {doc_url}")
# Try to show an image
scraper = DigitalCommonwealthScraper()
images = scraper.extract_images(doc_url)
images = images[:1]
if images:
output_dir = 'downloaded_images'
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
downloaded_files = scraper.download_images(images)
st.image(downloaded_files, width=400, caption=[
img.get('alt', f'Image') for img in images
])
except Exception as e:
logger.warning(f"[display_sources] Error displaying document: {e}")
st.error("Error displaying one of the sources.")
def main():
st.title("Digital Commonwealth RAG 🤖")
INDEX_NAME = 'bpl-rag'
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "show_settings" not in st.session_state:
st.session_state.show_settings = False
if "num_sources" not in st.session_state:
st.session_state.num_sources = 10
initialize_models()
# 🔵 Settings button
open_settings = st.button("⚙️ Settings")
if open_settings:
st.session_state.show_settings = True
if st.session_state.show_settings:
with st.container():
st.markdown("---")
st.markdown("### ⚙️ Settings")
num_sources = st.number_input(
"Number of Sources to Display",
min_value=1,
max_value=100,
value=st.session_state.num_sources,
step=1,
)
st.session_state.num_sources = num_sources
close_settings = st.button("❌ Close Settings")
if close_settings:
st.session_state.show_settings = False
st.markdown("---")
# Show chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# ⬇️ CHAT INPUT BOX always stuck to bottom
user_input = st.chat_input("Type your question here...")
if user_input:
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("assistant"):
with st.spinner("Thinking... Please be patient..."):
response, sources = process_message(
query=user_input,
llm=st.session_state.llm,
vectorstore=st.session_state.vectorstore
)
if isinstance(response, str):
st.markdown(response)
st.session_state.messages.append({
"role": "assistant",
"content": response
})
display_sources(sources[:int(st.session_state.num_sources)])
else:
st.error("Received an invalid response format")
# Footer (optional, will be above chat input)
st.markdown("---")
st.markdown(
"Built with Langchain + Streamlit + Pinecone",
help="Natural Language Querying for Digital Commonwealth"
)
st.markdown(
"The Digital Commonwealth site provides access to photographs, manuscripts, books, "
"audio recordings, and other materials of historical interest that have been digitized "
"and made available by members of Digital Commonwealth."
)
if __name__ == "__main__":
main() |