File size: 19,594 Bytes
d5c23d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import getpass
import os
import time
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import re
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
import requests
import psycopg2
from collections import defaultdict
from typing import Dict, Any, Optional, List, Tuple
import json
import logging

def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:    
    start = time.time()
    results = vectorstore.similarity_search_with_score(
        query,
        k=k,
    )
    documents = []
    scores = []
    for res, score in results:
        # check to make sure response isnt too long for context window of 4o-mini
        if len(res.page_content) > 4000:
            res.page_content = res.page_content[:4000]
        documents.append(res)
        scores.append(score)
    logging.info(f"Finished Retrieval: {time.time() - start}")
    return documents, scores

def safe_get_json(url: str) -> Optional[Dict]:
    """Safely fetch and parse JSON from a URL."""
    print("Fetching JSON")
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return response.json()
    except Exception as e:
        logging.error(f"Error fetching from {url}: {str(e)}")
        return None

def extract_text_from_json(json_data: Dict) -> str:
    """Extract text content from JSON response."""
    if not json_data:
        return ""
    
    text_parts = []
    
    # Handle direct text fields
    text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_basic_ssim","genre_specific_ssim","date_tsim"]
    for field in text_fields:
        if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]:
            # print(json_data[field])
            text_parts.append(str(json_data['data']['attributes'][field]))
    
    return " ".join(text_parts) if text_parts else "No content available"

def rephrase_and_expand_query(query: str, llm: Any) -> str:
    
    # Use LLM to rewrite and expand a query for better alignment with archive metadata.
    prompt_template = PromptTemplate.from_template(
        """

        You are a professional librarian skilled at historical research.

        Your task is to improve and expand the following search query to better match metadata in a historical archive.



        - First, rewrite the query to improve clarity and fit how librarians would search.

        - Second, expand the query by adding related terms (synonyms, related concepts, historical terminology, etc.).



        Return your output strictly in this format (no extra explanation):

        <IMPROVED_QUERY>your improved query here</IMPROVED_QUERY>

        <EXPANDED_QUERY>your expanded query here</EXPANDED_QUERY>



        Original Query: {query}

        """
    )

    prompt = prompt_template.invoke({"query": query})
    response = llm.invoke(prompt)

    # Extract just the improved and expanded queries
    improved_match = re.search(r"<IMPROVED_QUERY>(.*?)</IMPROVED_QUERY>", response.content, re.DOTALL)
    expanded_match = re.search(r"<EXPANDED_QUERY>(.*?)</EXPANDED_QUERY>", response.content, re.DOTALL)

    improved_query = improved_match.group(1).strip() if improved_match else query
    expanded_query = expanded_match.group(1).strip() if expanded_match else ""

    final_query = f"{improved_query} {expanded_query}".strip()

    logging.info(f"Original Query: {query}")
    logging.info(f"Improved Query: {improved_query}")
    logging.info(f"Expanded Query: {expanded_query}")
    logging.info(f"Final Query for Retrieval: {final_query}")

    return final_query



weights = {
    "title_info_primary_tsi": 1.5,  # Titles should be prioritized
    "name_role_tsim": 1.4,  # Author/role should be highly weighted
    "date_tsim": 1.3,  # Date should be considered
    "abstract_tsi": 1.0,  # Abstracts are important but less so
    "note_tsim": 0.8,  
    "subject_geographic_sim": 0.5,  
    "genre_basic_ssim": 0.5, 
    "genre_specific_ssim": 0.5,  
}

def get_metadata(document_ids: List[str]) -> Dict[str, Dict]:
    """ Fetch metadata from either PostgreSQL or the Commonwealth API, based on config """
    
    if USE_DB_FOR_METADATA:
        return get_metadata_from_db(document_ids)
    else:
        return get_metadata_from_api(document_ids)

def get_metadata_from_db(document_ids: List[str]) -> Dict[str, Dict]:
    """ Fetch metadata from PostgreSQL """
    conn = psycopg2.connect(
        host="127.0.0.1",
        port="5435",
        dbname="bpl_metadata",
        user="postgres",
        password="MNOF.MzLDjcgzAXu"  # Replace with real one or load with dotenv
    )
    cur = conn.cursor()

    sql_query = """

    SELECT id, title, abstract, subjects, institution, metadata_url, image_url 

    FROM metadata 

    WHERE id = ANY(%s);

    """
    cur.execute(sql_query, (document_ids,))
    results = cur.fetchall()
    cur.close()
    conn.close()

    # Convert results to a dictionary
    return {
        row[0]: {
            "title": row[1],
            "abstract": row[2],
            "subjects": row[3],
            "institution": row[4],
            "metadata_url": row[5],
            "image_url": row[6],
        }
        for row in results
    }

def get_metadata_from_api(document_ids: List[str]) -> Dict[str, Dict]:
    """ Fetch metadata from the Commonwealth API """
    metadata_dict = {}
    for doc_id in document_ids:
        url = f"https://www.digitalcommonwealth.org/search/{doc_id}.json"
        json_data = safe_get_json(url)
        if json_data:
            metadata_dict[doc_id] = extract_text_from_json(json_data)
    return metadata_dict



"""

def rerank(documents: List[Document], query: str) -> List[Document]:

    \"\"\"Ingest more metadata. Rerank documents using BM25\"\"\"

    start = time.time()

    if not documents:

        return []

    

    full_docs = []

    seen_sources = set()  

    meta_start = time.time()

    for doc in documents:

        source = doc.metadata.get('source')

        if not source or source in seen_sources:

            continue  # Skip duplicate sources

        seen_sources.add(source)



        url = f"https://www.digitalcommonwealth.org/search/{source}"

        json_data = safe_get_json(f"{url}.json")

        

        if json_data:

            text_content = extract_text_from_json(json_data)

            if text_content:  # Only add documents with actual content

                full_docs.append(Document(page_content=text_content, metadata={"source": source, "field": doc.metadata.get("field", ""), "URL": url}))



    logging.info(f"Took {time.time()-meta_start} seconds to retrieve all metadata")

    if not full_docs:

        return []



    # Create BM25 retriever with the processed documents

    bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))

    bm25_ranked_docs = bm25.invoke(query)



    ranked_docs = []

    for doc in bm25_ranked_docs:

        bm25_score = 1.0 



        # Compute metadata multiplier

        metadata_multiplier = 1.0 

        for field, weight in weights.items():

            if field in doc.metadata and doc.metadata[field]:

                metadata_multiplier += weight  



        # Compute final score: BM25 weight * Metadata multiplier

        final_score = bm25_score * metadata_multiplier

        ranked_docs.append((doc, final_score))



    # Sort by final score 

    ranked_docs.sort(key=lambda x: x[1], reverse=True)



    logging.info(f"Finished reranking: {time.time()-start}")

    return [doc for doc, _ in ranked_docs]

"""

'''

def rerank(documents: List[Document], query: str) -> List[Document]:

    """Retrieve metadata from the database and rerank using BM25"""

    start = time.time()

    if not documents:

        return []



    document_ids = [doc.metadata.get('source') for doc in documents if doc.metadata.get('source')]

    

    # Fetch metadata from PostgreSQL

    metadata_dict = get_metadata_from_db(document_ids)



    full_docs = []

    for doc in documents:

        doc_id = doc.metadata.get('source')

        metadata = metadata_dict.get(doc_id, {})



        if metadata:

            text_content = " ".join([

                metadata.get("title", ""),

                metadata.get("abstract", ""),

                " ".join(metadata.get("subjects", [])),

                metadata.get("institution", "")

            ]).strip()





            if text_content:

                full_docs.append(Document(page_content=text_content, metadata={

                    "source": doc_id, 

                    "URL": metadata.get("metadata_url", ""), 

                    "image_url": metadata.get("image_url", "")

                }))



    logging.info(f"Took {time.time()-start} seconds to retrieve all metadata from PostgreSQL")



    if not full_docs:

        return []



    # Rerank using BM25

    bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))

    bm25_ranked_docs = bm25.invoke(query)



    ranked_docs = []

    for doc in bm25_ranked_docs:

        bm25_score = 1.0 



        # Compute metadata multiplier

        metadata_multiplier = 1.0 

        for field, weight in weights.items():

            if field in doc.metadata and doc.metadata[field]:

                metadata_multiplier += weight  



        # Compute final score: BM25 weight * Metadata multiplier

        final_score = bm25_score * metadata_multiplier

        ranked_docs.append((doc, final_score))



    # Sort by final score 

    ranked_docs.sort(key=lambda x: x[1], reverse=True)



    logging.info(f"Finished reranking: {time.time()-start}")

    return [doc for doc, _ in ranked_docs]

'''

def rerank(documents: List[Document], query: str) -> List[Document]:
    """Rerank using BM25 and enhance scores using document metadata."""
    start = time.time()

    if not documents:
        return []

    # Group document chunks by source_id
    grouped = defaultdict(list)
    for doc in documents:
        source_id = doc.metadata.get("source")
        if source_id:
            grouped[source_id].append(doc)

    full_docs = []
    for source_id, chunks in grouped.items():
        combined_text = " ".join([chunk.page_content for chunk in chunks if chunk.page_content])
        representative_metadata = chunks[0].metadata or {}

        #logging.debug(f"Metadata for doc {source_id}: {representative_metadata}")

        if combined_text.strip():
            full_docs.append(Document(
                page_content=combined_text.strip(),
                metadata={
                    "source": source_id,
                    "URL": representative_metadata.get("metadata_url", ""),
                    "image_url": representative_metadata.get("image_url", ""),
                    **representative_metadata  # preserve all original fields
                }
            ))

    logging.info(f"Built {len(full_docs)} documents for reranking in {time.time() - start:.2f} seconds.")

    if not full_docs:
        return []

    # BM25 reranking
    bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
    bm25_ranked_docs = bm25.invoke(query)

    # Score enhancement using metadata weights
    ranked_docs = []
    for doc in bm25_ranked_docs:
        bm25_score = 1.0  # BM25 returns sorted, so base score is 1
        metadata_multiplier = 1.0
        for field, weight in weights.items():
            if field in doc.metadata and doc.metadata[field]:
                metadata_multiplier += weight
        final_score = bm25_score * metadata_multiplier
        ranked_docs.append((doc, final_score))

    # Sort by enhanced score
    ranked_docs.sort(key=lambda x: x[1], reverse=True)
    logging.info(f"Finished reranking in {time.time() - start:.2f} seconds")

    return [doc for doc, _ in ranked_docs]



def parse_xml_and_query(query:str,xml_string:str) -> str:
    """parse xml and return rephrased query"""
    if not xml_string:
        return "No response generated."
    
    pattern = r"<(\w+)>(.*?)</\1>"
    matches = re.findall(pattern, xml_string, re.DOTALL)
    parsed_response = dict(matches)
    if parsed_response.get('VALID') == 'NO':
        return query
    return parsed_response.get('STATEMENT', query)


def parse_xml_and_check(xml_string: str) -> str:
    """Parse XML-style tags and handle validation."""
    if not xml_string:
        return "No response generated."
    
    pattern = r"<(\w+)>(.*?)</\1>"
    matches = re.findall(pattern, xml_string, re.DOTALL)
    parsed_response = dict(matches)
    
    if parsed_response.get('VALID') == 'NO':
        return "Sorry, I was unable to find any documents for your query.\n\n Here are some documents I found that might be relevant."
    
    return parsed_response.get('RESPONSE', "No response found in the output")

def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
    """Main RAG function with improved error handling and validation."""
    start = time.time()
    try:

        # Query alignment is commented our, however I have decided to leave it in for potential future use.

        # Retrieve initial documents using rephrased query -- not working as intended currently, maybe would be better for data with more words.
        # query_template = PromptTemplate.from_template(
        #     """
        #     Your job is to think about a query and then generate a statement that only includes information from the query that would answer the query.
        #     You will be provided with a query in <QUERY></QUERY> tags. 
        #     Then you will think about what kind of information the query is looking for between <REASONING></REASONING> tags.
        #     Then, based on the reasoning, you will generate a sample response to the query that only includes information from the query between <STATEMENT></STATEMENT> tags.
        #     Afterwards, you will determine and reason about whether or not the statement you generated only includes information from the original query and would answer the query between <DETERMINATION></DETERMINATION> tags.
        #     Finally, you will return a YES, or NO response between <VALID></VALID> tags based on whether or not you determined the statment to be valid.
        #     Let me provide you with an exmaple:

        #     <QUERY>I would really like to learn more about Bermudan geography<QUERY>

        #     <REASONING>This query is interested in geograph as it relates to Bermuda. Some things they might be interested in are Bermudan climate, towns, cities, and geography</REASONING>

        #     <STATEMENT>Bermuda's Climate is [blank]. Some of Bermuda's cities and towns are [blank]. Other points of interested about Bermuda's geography are [blank].</STATEMENT>

        #     <DETERMINATION>The query originally only mentions bermuda and geography. The answers do not provide any false information, instead replacing meaningful responses with a placeholder [blank]. If it had hallucinated, it would not be valid. Because the statements do not hallucinate anything, this is a valid statement.</DETERMINATION>
            
        #     <VALID>YES</VALID>

        #     Now it's your turn! Remember not to hallucinate:

        #     <QUERY>{query}</QUERY>
        #     """
        # )
        # query_prompt = query_template.invoke({"query":query})
        # query_response = llm.invoke(query_prompt)
        # new_query = parse_xml_and_query(query=query,xml_string=query_response.content)
        
        #logging.info(f"\n---\nQUERY: {query}")

        #new query rephrasing
        #query = rephrase_and_expand_query(query, llm)
        #logging.info(f"\n---\nRephrased QUERY: {query}")

        retrieved, _ = retrieve(query=query, vectorstore=vectorstore, k=k)
        if not retrieved:
            return "No documents found for your query.", []
        
        # Rerank documents
        reranked = rerank(documents=retrieved, query=query)
        logging.info(f"RERANKED LENGTH: {len(reranked)}")
        if not reranked:
            return "Unable to process the retrieved documents.", []
        
        # Prepare context from reranked documents
        context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content)
        if not context.strip():
            return "No relevant content found in the documents.", []
        # change for the sake of another commit
        # Prepare prompt
        answer_template = PromptTemplate.from_template(
            """Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron:

            Some of the retrieved results may include image descriptions, captions, or references to photos, rather than the images themselves. 

            Assume that content describing or captioning an image, or mentioning a place/person clearly, is valid and relevant — even if the actual image isn't embedded.

            Context:{context}

            Make sure to answer in the following format

            First, reason about the answer between <REASONING></REASONING> headers,

            based on the context determine if there is sufficient material for answering the exact question,

            return either <VALID>YES</VALID> or <VALID>NO</VALID>

            then return a response between <RESPONSE></RESPONSE> headers:

            Here is an example

            <EXAMPLE>

            <QUERY>Are pineapples a good fuel for cars?</QUERY>

            <CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT>

            <REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING>

            <VALID>NO</VALID>

            <RESPONSE>Pineapples are not a good fuel for cars, however with further research they might be</RESPONSE> 

            </EXAMPLE>

            Now it's your turn 

            <QUERY>

            {query}

            </QUERY>"""
        )
        
        # Generate response
        ans_prompt = answer_template.invoke({"context": context, "query": query})
        response = llm.invoke(ans_prompt)
        
        # Parse and return response
        logging.debug(f"RAW LLM RESPONSE:\n{response.content}")
        parsed = parse_xml_and_check(response.content)
        logging.debug(f"PARSED FINAL RESPONSE: {parsed}")
        #logging.info(f"RESPONSE: {parsed}\nRETRIEVED: {reranked}")
        logging.info(f"RAG Finished: {time.time()-start}\n---\n")
        return parsed, reranked
        
    except Exception as e:
        logging.error(f"Error in RAG function: {str(e)}")
        return f"An error occurred while processing your query: {str(e)}", []