Spaces:
Running
Running
File size: 19,594 Bytes
d5c23d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import getpass
import os
import time
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import re
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
import requests
import psycopg2
from collections import defaultdict
from typing import Dict, Any, Optional, List, Tuple
import json
import logging
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
start = time.time()
results = vectorstore.similarity_search_with_score(
query,
k=k,
)
documents = []
scores = []
for res, score in results:
# check to make sure response isnt too long for context window of 4o-mini
if len(res.page_content) > 4000:
res.page_content = res.page_content[:4000]
documents.append(res)
scores.append(score)
logging.info(f"Finished Retrieval: {time.time() - start}")
return documents, scores
def safe_get_json(url: str) -> Optional[Dict]:
"""Safely fetch and parse JSON from a URL."""
print("Fetching JSON")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching from {url}: {str(e)}")
return None
def extract_text_from_json(json_data: Dict) -> str:
"""Extract text content from JSON response."""
if not json_data:
return ""
text_parts = []
# Handle direct text fields
text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_basic_ssim","genre_specific_ssim","date_tsim"]
for field in text_fields:
if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]:
# print(json_data[field])
text_parts.append(str(json_data['data']['attributes'][field]))
return " ".join(text_parts) if text_parts else "No content available"
def rephrase_and_expand_query(query: str, llm: Any) -> str:
# Use LLM to rewrite and expand a query for better alignment with archive metadata.
prompt_template = PromptTemplate.from_template(
"""
You are a professional librarian skilled at historical research.
Your task is to improve and expand the following search query to better match metadata in a historical archive.
- First, rewrite the query to improve clarity and fit how librarians would search.
- Second, expand the query by adding related terms (synonyms, related concepts, historical terminology, etc.).
Return your output strictly in this format (no extra explanation):
<IMPROVED_QUERY>your improved query here</IMPROVED_QUERY>
<EXPANDED_QUERY>your expanded query here</EXPANDED_QUERY>
Original Query: {query}
"""
)
prompt = prompt_template.invoke({"query": query})
response = llm.invoke(prompt)
# Extract just the improved and expanded queries
improved_match = re.search(r"<IMPROVED_QUERY>(.*?)</IMPROVED_QUERY>", response.content, re.DOTALL)
expanded_match = re.search(r"<EXPANDED_QUERY>(.*?)</EXPANDED_QUERY>", response.content, re.DOTALL)
improved_query = improved_match.group(1).strip() if improved_match else query
expanded_query = expanded_match.group(1).strip() if expanded_match else ""
final_query = f"{improved_query} {expanded_query}".strip()
logging.info(f"Original Query: {query}")
logging.info(f"Improved Query: {improved_query}")
logging.info(f"Expanded Query: {expanded_query}")
logging.info(f"Final Query for Retrieval: {final_query}")
return final_query
weights = {
"title_info_primary_tsi": 1.5, # Titles should be prioritized
"name_role_tsim": 1.4, # Author/role should be highly weighted
"date_tsim": 1.3, # Date should be considered
"abstract_tsi": 1.0, # Abstracts are important but less so
"note_tsim": 0.8,
"subject_geographic_sim": 0.5,
"genre_basic_ssim": 0.5,
"genre_specific_ssim": 0.5,
}
def get_metadata(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from either PostgreSQL or the Commonwealth API, based on config """
if USE_DB_FOR_METADATA:
return get_metadata_from_db(document_ids)
else:
return get_metadata_from_api(document_ids)
def get_metadata_from_db(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from PostgreSQL """
conn = psycopg2.connect(
host="127.0.0.1",
port="5435",
dbname="bpl_metadata",
user="postgres",
password="MNOF.MzLDjcgzAXu" # Replace with real one or load with dotenv
)
cur = conn.cursor()
sql_query = """
SELECT id, title, abstract, subjects, institution, metadata_url, image_url
FROM metadata
WHERE id = ANY(%s);
"""
cur.execute(sql_query, (document_ids,))
results = cur.fetchall()
cur.close()
conn.close()
# Convert results to a dictionary
return {
row[0]: {
"title": row[1],
"abstract": row[2],
"subjects": row[3],
"institution": row[4],
"metadata_url": row[5],
"image_url": row[6],
}
for row in results
}
def get_metadata_from_api(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from the Commonwealth API """
metadata_dict = {}
for doc_id in document_ids:
url = f"https://www.digitalcommonwealth.org/search/{doc_id}.json"
json_data = safe_get_json(url)
if json_data:
metadata_dict[doc_id] = extract_text_from_json(json_data)
return metadata_dict
"""
def rerank(documents: List[Document], query: str) -> List[Document]:
\"\"\"Ingest more metadata. Rerank documents using BM25\"\"\"
start = time.time()
if not documents:
return []
full_docs = []
seen_sources = set()
meta_start = time.time()
for doc in documents:
source = doc.metadata.get('source')
if not source or source in seen_sources:
continue # Skip duplicate sources
seen_sources.add(source)
url = f"https://www.digitalcommonwealth.org/search/{source}"
json_data = safe_get_json(f"{url}.json")
if json_data:
text_content = extract_text_from_json(json_data)
if text_content: # Only add documents with actual content
full_docs.append(Document(page_content=text_content, metadata={"source": source, "field": doc.metadata.get("field", ""), "URL": url}))
logging.info(f"Took {time.time()-meta_start} seconds to retrieve all metadata")
if not full_docs:
return []
# Create BM25 retriever with the processed documents
bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
bm25_ranked_docs = bm25.invoke(query)
ranked_docs = []
for doc in bm25_ranked_docs:
bm25_score = 1.0
# Compute metadata multiplier
metadata_multiplier = 1.0
for field, weight in weights.items():
if field in doc.metadata and doc.metadata[field]:
metadata_multiplier += weight
# Compute final score: BM25 weight * Metadata multiplier
final_score = bm25_score * metadata_multiplier
ranked_docs.append((doc, final_score))
# Sort by final score
ranked_docs.sort(key=lambda x: x[1], reverse=True)
logging.info(f"Finished reranking: {time.time()-start}")
return [doc for doc, _ in ranked_docs]
"""
'''
def rerank(documents: List[Document], query: str) -> List[Document]:
"""Retrieve metadata from the database and rerank using BM25"""
start = time.time()
if not documents:
return []
document_ids = [doc.metadata.get('source') for doc in documents if doc.metadata.get('source')]
# Fetch metadata from PostgreSQL
metadata_dict = get_metadata_from_db(document_ids)
full_docs = []
for doc in documents:
doc_id = doc.metadata.get('source')
metadata = metadata_dict.get(doc_id, {})
if metadata:
text_content = " ".join([
metadata.get("title", ""),
metadata.get("abstract", ""),
" ".join(metadata.get("subjects", [])),
metadata.get("institution", "")
]).strip()
if text_content:
full_docs.append(Document(page_content=text_content, metadata={
"source": doc_id,
"URL": metadata.get("metadata_url", ""),
"image_url": metadata.get("image_url", "")
}))
logging.info(f"Took {time.time()-start} seconds to retrieve all metadata from PostgreSQL")
if not full_docs:
return []
# Rerank using BM25
bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
bm25_ranked_docs = bm25.invoke(query)
ranked_docs = []
for doc in bm25_ranked_docs:
bm25_score = 1.0
# Compute metadata multiplier
metadata_multiplier = 1.0
for field, weight in weights.items():
if field in doc.metadata and doc.metadata[field]:
metadata_multiplier += weight
# Compute final score: BM25 weight * Metadata multiplier
final_score = bm25_score * metadata_multiplier
ranked_docs.append((doc, final_score))
# Sort by final score
ranked_docs.sort(key=lambda x: x[1], reverse=True)
logging.info(f"Finished reranking: {time.time()-start}")
return [doc for doc, _ in ranked_docs]
'''
def rerank(documents: List[Document], query: str) -> List[Document]:
"""Rerank using BM25 and enhance scores using document metadata."""
start = time.time()
if not documents:
return []
# Group document chunks by source_id
grouped = defaultdict(list)
for doc in documents:
source_id = doc.metadata.get("source")
if source_id:
grouped[source_id].append(doc)
full_docs = []
for source_id, chunks in grouped.items():
combined_text = " ".join([chunk.page_content for chunk in chunks if chunk.page_content])
representative_metadata = chunks[0].metadata or {}
#logging.debug(f"Metadata for doc {source_id}: {representative_metadata}")
if combined_text.strip():
full_docs.append(Document(
page_content=combined_text.strip(),
metadata={
"source": source_id,
"URL": representative_metadata.get("metadata_url", ""),
"image_url": representative_metadata.get("image_url", ""),
**representative_metadata # preserve all original fields
}
))
logging.info(f"Built {len(full_docs)} documents for reranking in {time.time() - start:.2f} seconds.")
if not full_docs:
return []
# BM25 reranking
bm25 = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
bm25_ranked_docs = bm25.invoke(query)
# Score enhancement using metadata weights
ranked_docs = []
for doc in bm25_ranked_docs:
bm25_score = 1.0 # BM25 returns sorted, so base score is 1
metadata_multiplier = 1.0
for field, weight in weights.items():
if field in doc.metadata and doc.metadata[field]:
metadata_multiplier += weight
final_score = bm25_score * metadata_multiplier
ranked_docs.append((doc, final_score))
# Sort by enhanced score
ranked_docs.sort(key=lambda x: x[1], reverse=True)
logging.info(f"Finished reranking in {time.time() - start:.2f} seconds")
return [doc for doc, _ in ranked_docs]
def parse_xml_and_query(query:str,xml_string:str) -> str:
"""parse xml and return rephrased query"""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)</\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return query
return parsed_response.get('STATEMENT', query)
def parse_xml_and_check(xml_string: str) -> str:
"""Parse XML-style tags and handle validation."""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)</\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return "Sorry, I was unable to find any documents for your query.\n\n Here are some documents I found that might be relevant."
return parsed_response.get('RESPONSE', "No response found in the output")
def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
"""Main RAG function with improved error handling and validation."""
start = time.time()
try:
# Query alignment is commented our, however I have decided to leave it in for potential future use.
# Retrieve initial documents using rephrased query -- not working as intended currently, maybe would be better for data with more words.
# query_template = PromptTemplate.from_template(
# """
# Your job is to think about a query and then generate a statement that only includes information from the query that would answer the query.
# You will be provided with a query in <QUERY></QUERY> tags.
# Then you will think about what kind of information the query is looking for between <REASONING></REASONING> tags.
# Then, based on the reasoning, you will generate a sample response to the query that only includes information from the query between <STATEMENT></STATEMENT> tags.
# Afterwards, you will determine and reason about whether or not the statement you generated only includes information from the original query and would answer the query between <DETERMINATION></DETERMINATION> tags.
# Finally, you will return a YES, or NO response between <VALID></VALID> tags based on whether or not you determined the statment to be valid.
# Let me provide you with an exmaple:
# <QUERY>I would really like to learn more about Bermudan geography<QUERY>
# <REASONING>This query is interested in geograph as it relates to Bermuda. Some things they might be interested in are Bermudan climate, towns, cities, and geography</REASONING>
# <STATEMENT>Bermuda's Climate is [blank]. Some of Bermuda's cities and towns are [blank]. Other points of interested about Bermuda's geography are [blank].</STATEMENT>
# <DETERMINATION>The query originally only mentions bermuda and geography. The answers do not provide any false information, instead replacing meaningful responses with a placeholder [blank]. If it had hallucinated, it would not be valid. Because the statements do not hallucinate anything, this is a valid statement.</DETERMINATION>
# <VALID>YES</VALID>
# Now it's your turn! Remember not to hallucinate:
# <QUERY>{query}</QUERY>
# """
# )
# query_prompt = query_template.invoke({"query":query})
# query_response = llm.invoke(query_prompt)
# new_query = parse_xml_and_query(query=query,xml_string=query_response.content)
#logging.info(f"\n---\nQUERY: {query}")
#new query rephrasing
#query = rephrase_and_expand_query(query, llm)
#logging.info(f"\n---\nRephrased QUERY: {query}")
retrieved, _ = retrieve(query=query, vectorstore=vectorstore, k=k)
if not retrieved:
return "No documents found for your query.", []
# Rerank documents
reranked = rerank(documents=retrieved, query=query)
logging.info(f"RERANKED LENGTH: {len(reranked)}")
if not reranked:
return "Unable to process the retrieved documents.", []
# Prepare context from reranked documents
context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content)
if not context.strip():
return "No relevant content found in the documents.", []
# change for the sake of another commit
# Prepare prompt
answer_template = PromptTemplate.from_template(
"""Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron:
Some of the retrieved results may include image descriptions, captions, or references to photos, rather than the images themselves.
Assume that content describing or captioning an image, or mentioning a place/person clearly, is valid and relevant — even if the actual image isn't embedded.
Context:{context}
Make sure to answer in the following format
First, reason about the answer between <REASONING></REASONING> headers,
based on the context determine if there is sufficient material for answering the exact question,
return either <VALID>YES</VALID> or <VALID>NO</VALID>
then return a response between <RESPONSE></RESPONSE> headers:
Here is an example
<EXAMPLE>
<QUERY>Are pineapples a good fuel for cars?</QUERY>
<CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT>
<REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING>
<VALID>NO</VALID>
<RESPONSE>Pineapples are not a good fuel for cars, however with further research they might be</RESPONSE>
</EXAMPLE>
Now it's your turn
<QUERY>
{query}
</QUERY>"""
)
# Generate response
ans_prompt = answer_template.invoke({"context": context, "query": query})
response = llm.invoke(ans_prompt)
# Parse and return response
logging.debug(f"RAW LLM RESPONSE:\n{response.content}")
parsed = parse_xml_and_check(response.content)
logging.debug(f"PARSED FINAL RESPONSE: {parsed}")
#logging.info(f"RESPONSE: {parsed}\nRETRIEVED: {reranked}")
logging.info(f"RAG Finished: {time.time()-start}\n---\n")
return parsed, reranked
except Exception as e:
logging.error(f"Error in RAG function: {str(e)}")
return f"An error occurred while processing your query: {str(e)}", [] |