milky-green-svc / infer_tool.py
sparanoid's picture
feat: init repo
c8318dc unverified
raw
history blame contribute delete
5.92 kB
import logging
import os
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio
import hubert_model
import utils
from models import SynthesizerTrn
from preprocess_wave import FeatureInput
logging.getLogger('matplotlib').setLevel(logging.WARNING)
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def timeit(func):
def run(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
return res
return run
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def load_model(model_path, config_path):
# 获取模型配置
hps_ms = utils.get_hparams_from_file(config_path)
n_g_ms = SynthesizerTrn(
178,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
_ = utils.load_checkpoint(model_path, n_g_ms, None)
_ = n_g_ms.eval().to(dev)
# 加载hubert
hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
return n_g_ms, hubert_soft, feature_input, hps_ms
def resize2d_f0(x, target_len):
source = np.array(x)
source[source < 0.001] = np.nan
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
source)
res = np.nan_to_num(target)
return res
def get_units(in_path, hubert_soft):
source, sr = torchaudio.load(in_path)
source = torchaudio.functional.resample(source, sr, 16000)
if len(source.shape) == 2 and source.shape[1] >= 2:
source = torch.mean(source, dim=0).unsqueeze(0)
source = source.unsqueeze(0).to(dev)
with torch.inference_mode():
units = hubert_soft.units(source)
return units
def transcribe(source_path, length, transform, feature_input):
feature_pit = feature_input.compute_f0(source_path)
feature_pit = feature_pit * 2 ** (transform / 12)
feature_pit = resize2d_f0(feature_pit, length)
coarse_pit = feature_input.coarse_f0(feature_pit)
return coarse_pit
def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
soft = get_units(in_path, hubert_soft).squeeze(0).cpu().numpy()
input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
return soft, input_pitch
def clean_pitch(input_pitch):
num_nan = np.sum(input_pitch == 1)
if num_nan / len(input_pitch) > 0.9:
input_pitch[input_pitch != 1] = 1
return input_pitch
def plt_pitch(input_pitch):
input_pitch = input_pitch.astype(float)
input_pitch[input_pitch == 1] = np.nan
return input_pitch
def f0_to_pitch(ff):
f0_pitch = 69 + 12 * np.log2(ff / 440)
return f0_pitch
def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
plt.clf()
plt.plot(plt_pitch(input_pitch), color="#66ccff")
plt.plot(plt_pitch(output_pitch), color="orange")
plt.savefig("temp.jpg")
def calc_error(in_path, out_path, tran, feature_input):
input_pitch = feature_input.compute_f0(in_path)
output_pitch = feature_input.compute_f0(out_path)
sum_y = []
if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
mistake, var_take = 0, 0
else:
for i in range(min(len(input_pitch), len(output_pitch))):
if input_pitch[i] > 0 and output_pitch[i] > 0:
sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
num_y = 0
for x in sum_y:
num_y += x
len_y = len(sum_y) if len(sum_y) else 1
mistake = round(float(num_y / len_y), 2)
var_take = round(float(np.std(sum_y, ddof=1)), 2)
return mistake, var_take
def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
sid = torch.LongTensor([int(speaker_id)]).to(dev)
soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
stn_tst = torch.FloatTensor(soft)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(dev)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
audio = \
net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
length_scale=1)[0][
0, 0].data.float().cpu().numpy()
return audio, audio.shape[-1]
def del_temp_wav(path_data):
for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
os.remove(i)
def format_wav(audio_path, tar_sample):
raw_audio, raw_sample_rate = torchaudio.load(audio_path)
if len(raw_audio.shape) == 2 and raw_audio.shape[1] >= 2:
raw_audio = torch.mean(raw_audio, dim=0).unsqueeze(0)
tar_audio = torchaudio.functional.resample(raw_audio, raw_sample_rate, tar_sample)
torchaudio.save(audio_path[:-4] + ".wav", tar_audio, tar_sample)
return tar_audio, tar_sample
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)