Spaces:
Sleeping
Sleeping
File size: 11,242 Bytes
90e02bf 2510b49 90e02bf 2510b49 2c8d2f7 90e02bf 2c8d2f7 90e02bf 2c8d2f7 90e02bf 2c8d2f7 90e02bf 2510b49 2c8d2f7 2510b49 2c8d2f7 90e02bf 2c8d2f7 90e02bf c206384 90e02bf c206384 2510b49 c206384 2510b49 c206384 2510b49 c206384 2510b49 90e02bf 2510b49 90e02bf 2510b49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import pipeline
import os
# Load models
def load_models():
# Load segmentation model
segmenter = pipeline("image-segmentation", model="facebook/maskformer-swin-base-ade")
# Load depth estimation model
depth_estimator = pipeline("depth-estimation", model="intel/dpt-large")
return segmenter, depth_estimator
# Create binary mask
def create_binary_mask(segmentation_results, image_np, target_class="person"):
# Initialize empty mask with black background
mask = np.zeros((image_np.shape[0], image_np.shape[1]), dtype=np.uint8)
# Look for segments with target class
found = False
for segment in segmentation_results:
if target_class.lower() in segment['label'].lower():
# Convert segment mask to numpy array
segment_mask = np.array(segment['mask'])
# Convert grayscale to binary (255 for white)
binary_mask = np.where(segment_mask > 0.5, 255, 0).astype(np.uint8)
# Add to overall mask
mask = cv2.bitwise_or(mask, binary_mask)
found = True
# If target class not found, use the largest segment
if not found:
largest_area = 0
largest_mask = None
for segment in segmentation_results:
segment_mask = np.array(segment['mask'])
binary_mask = np.where(segment_mask > 0.5, 255, 0).astype(np.uint8)
area = np.sum(binary_mask > 0)
if area > largest_area:
largest_area = area
largest_mask = binary_mask
if largest_mask is not None:
mask = largest_mask
return mask
# Apply Gaussian blur to background
def apply_gaussian_blur_to_background(image_np, mask, sigma=15):
# Create a blurred version of the entire image
blurred_image = cv2.GaussianBlur(image_np, (0, 0), sigma)
# Ensure mask is in correct format
if len(mask.shape) == 3 and mask.shape[2] == 3:
mask_gray = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
else:
mask_gray = mask.copy()
# Normalize mask to range 0-1
if mask_gray.max() > 1:
mask_gray = mask_gray / 255.0
# Expand mask dimensions for elementwise multiplication
mask_3channel = np.stack([mask_gray] * 3, axis=2)
# Combine original foreground with blurred background
result = image_np * mask_3channel + blurred_image * (1 - mask_3channel)
result = result.astype(np.uint8)
return result
# Normalize depth map
def normalize_depth_map(depth_map):
"""Normalize depth map to range [0, 1]"""
depth_min = depth_map.min()
depth_max = depth_map.max()
if depth_min == depth_max:
return np.zeros_like(depth_map)
normalized_depth = (depth_map - depth_min) / (depth_max - depth_min)
# Explicitly invert the depth map - this is the critical fix
return 1.0 - normalized_depth
# Apply depth-based blur
# def apply_depth_based_blur(image, depth_map, max_blur=25):
# """Apply variable Gaussian blur based on depth with enhanced effect"""
# # Create output image
# result = np.zeros_like(image)
# # Normalize depth map
# normalized_depth = normalize_depth_map(depth_map)
# # Enhance depth contrast to make the effect more noticeable
# # Apply gamma correction to increase contrast between foreground and background
# gamma = 0.5 # Values less than 1 will enhance contrast
# normalized_depth = np.power(normalized_depth, gamma)
# # Apply blur with intensity proportional to depth
# for blur_size in range(1, max_blur + 1, 2): # Odd numbers for kernel size
# # Create a mask for pixels that should receive this blur level
# if blur_size == 1:
# mask = (normalized_depth <= blur_size / max_blur).astype(np.float32)
# else:
# lower_bound = (blur_size - 2) / max_blur
# upper_bound = blur_size / max_blur
# mask = ((normalized_depth > lower_bound) & (normalized_depth <= upper_bound)).astype(np.float32)
# # Skip if no pixels in this range
# if not np.any(mask):
# continue
# # Apply Gaussian blur with current kernel size
# if blur_size > 1: # No need to blur with kernel size 1
# try:
# blurred = cv2.GaussianBlur(image, (blur_size, blur_size), 0)
# # Add blurred result to output image
# mask_3d = np.stack([mask] * 3, axis=2)
# result += (blurred * mask_3d).astype(np.uint8)
# except Exception as e:
# print(f"Error applying blur with size {blur_size}: {e}")
# continue
# else:
# # For blur_size=1, just copy the original pixels
# mask_3d = np.stack([mask] * 3, axis=2)
# result += (image * mask_3d).astype(np.uint8)
# return result
def apply_depth_based_blur(image, depth_map, max_blur=25):
"""Apply variable Gaussian blur based on depth with foreground in focus"""
# Start with a copy of the original image
result = image.copy().astype(float)
# Normalize depth map
normalized_depth = normalize_depth_map(depth_map)
# The depth map from intel/dpt-large is already set up so closer objects
# have lower values. We need to define a threshold to separate foreground from background.
foreground_threshold = 0.3 # Adjust this value based on your depth map
# Create increasingly blurred versions of the image
blurred_images = []
blur_strengths = []
# Generate progressively blurred versions
for blur_size in range(3, max_blur + 1, 4): # Use larger step for efficiency
blur_strengths.append(blur_size)
blurred = cv2.GaussianBlur(image, (blur_size, blur_size), 0)
blurred_images.append(blurred)
# Apply the appropriate blur level based on depth
for y in range(image.shape[0]):
for x in range(image.shape[1]):
depth_val = normalized_depth[y, x]
# Keep foreground sharp
if depth_val <= foreground_threshold:
continue
# Apply blur based on depth - background gets more blur
relative_depth = (depth_val - foreground_threshold) / (1 - foreground_threshold)
blur_index = min(int(relative_depth * len(blurred_images)), len(blurred_images) - 1)
# Apply the appropriate blur level
result[y, x] = blurred_images[blur_index][y, x]
return result.astype(np.uint8)
# Process function for Gradio
def process_image(input_image, blur_effect_type, blur_strength, target_class, show_depth_map=False):
try:
# Load models if not already loaded
if not hasattr(process_image, "models_loaded"):
process_image.segmenter, process_image.depth_estimator = load_models()
process_image.models_loaded = True
# Convert to numpy array
image_np = np.array(input_image)
# Process based on selected effect
if blur_effect_type == "Gaussian Background Blur":
# Segment the image
segmentation_results = process_image.segmenter(input_image)
# Create binary mask
binary_mask = create_binary_mask(segmentation_results, image_np, target_class)
# Apply Gaussian blur to background
result = apply_gaussian_blur_to_background(image_np, binary_mask, sigma=blur_strength)
return result
elif blur_effect_type == "Depth-Based Lens Blur":
# Resize for depth estimation
depth_input = cv2.resize(image_np, (512, 512))
# Convert to PIL image for the depth estimator
depth_input_pil = Image.fromarray(depth_input)
# Get depth map
depth_result = process_image.depth_estimator(depth_input_pil)
depth_map = np.array(depth_result["depth"])
# If show_depth_map is True, return a visualization of the depth map
if show_depth_map:
# Normalize depth map for visualization
depth_vis = normalize_depth_map(depth_map)
# Convert to colormap for better visualization
depth_colormap = cv2.applyColorMap((depth_vis * 255).astype(np.uint8), cv2.COLORMAP_PLASMA)
return depth_colormap
# Apply depth-based blur
result = apply_depth_based_blur(depth_input, depth_map, max_blur=blur_strength)
# Resize back to original dimensions if needed
if image_np.shape[:2] != (512, 512):
result = cv2.resize(result, (image_np.shape[1], image_np.shape[0]))
return result
else:
return image_np # Return original if no effect selected
except Exception as e:
print(f"Error in process_image: {e}")
# Return the original image if there's an error
return input_image
# Create Gradio interface
demo = gr.Blocks(title="Image Blur Effects")
with demo:
gr.Markdown("# Image Blur Effects using Segmentation and Depth Estimation")
gr.Markdown("Upload an image to apply different blur effects. For best results, use an image with a clear foreground subject.")
with gr.Row():
input_image = gr.Image(label="Input Image", type="pil")
output_image = gr.Image(label="Output Image")
with gr.Row():
blur_effect_type = gr.Radio(
["Gaussian Background Blur", "Depth-Based Lens Blur"],
label="Blur Effect Type",
value="Gaussian Background Blur"
)
blur_strength = gr.Slider(
minimum=5,
maximum=45,
step=2,
value=15,
label="Blur Strength"
)
target_class = gr.Textbox(
label="Target Class (for segmentation)",
value="person",
placeholder="e.g., person, cat, dog"
)
process_btn = gr.Button("Apply Effect")
process_btn.click(
fn=process_image,
inputs=[input_image, blur_effect_type, blur_strength, target_class],
outputs=output_image
)
error_output = gr.Textbox(label="Error Information", visible=False)
gr.Markdown("""
## How to use:
1. Upload an image with a clear foreground subject
2. Choose a blur effect type:
- **Gaussian Background Blur**: Blurs the background while keeping the foreground sharp
- **Depth-Based Lens Blur**: Creates a realistic lens blur effect based on depth estimation
3. Adjust the blur strength
4. For Gaussian Background Blur, specify the target class to identify the foreground (e.g., person, cat, dog)
5. Click "Apply Effect"
""")
# Initialize models
segmenter, depth_estimator = load_models()
# Launch the app
demo.launch(show_error = True)
|